Summary:
So far EffectsHandlerImpl directly accessed SceneXrender::bufferPicture
through a dynamic cast. If in future the XRender based compositor should
be moved into a plugin we cannot access it through a dynamic cast.
To solve this problem the bufferPicture method is moved into Scene as
a virtual method returning a sane default value.
Reviewers: #kwin, #plasma
Subscribers: plasma-devel, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D7207
This change is needed for Wayland screen recording apps to work
correctly. With this change the cursor is actually visible using GBM
buffer passing protocol.
Previously OpenGL backend did not support software cursor. If launching
in DRM/OpenGL mode with flicked on software cursor it only rendered
scene, but not the cursor image.
Differential Revision: https://phabricator.kde.org/D6186
Summary:
A new method to tell the effects system whether the compositor scene
is able to drive animations. E.g. on software emulation (llvmpipe) it's
better to not do any animations at all.
This information can be used by effects to adjust their behavior, e.g.
PresentWindows could skip transitions or effects can use it in their
supported check to completely disable themselves.
As a first step all scripted effects are considered to be unsupported
if animations are not supported. They inherit AnimationEffect and are
all about driving animations.
The information whether animations are supported comes from the Scene.
It's implemented in the following way:
* XRender: animations are always supported
* QPainter: animations are never supported
* OpenGL: animations are supported, except for software emulation
In addition - for easier testing - there is a new env variable
KWIN_EFFECTS_FORCE_ANIMATIONS to overwrite the selection.
Reviewers: #kwin, #plasma
Subscribers: kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D2386
Summary:
Using a static XRenderPicture results in a crash on exit as for cleanup
the already destroyed xcb_connection_t* is required.
This change ensures that the static XRenderPicture gets destroyed in the
static cleanup handler for SceneXRender::Window.
CCBUG: 363251
Reviewers: #plasma
Subscribers: plasma-devel
Tags: #plasma
Differential Revision: https://phabricator.kde.org/D1733
It didn't get adjusted for Xwayland, so probably doesn't work any more.
The rendering mode seems not very useful if honest and it's better to
use the QPainter backend.
Move the buffer-swap-pending state from the compositing backends to
the Compositor class. The Compositor is the only class that needs to
access the state, and this way it to do it without calling through
a chain of virtual functions. This commit adds two new functions to
Compositor; aboutToSwapBuffers() and bufferSwapComplete(). The
backends call these functions to set and reset the buffer-swap-pending
state.
This commit also renames a number of functions and variables to make
their meaning clear.
The act of promoting the contents of the back buffer to become the
contents of the front buffer is referred to as posting the buffer,
presenting the buffer, or swapping the buffers; rendering the buffer
is what paintScreen() does.
The Renderer gets reparented to the Deleted. While passing it to
the Deleted the Scene's implementation can ensure that the buffers
are up to date. After passing to Deleted it's no longer allowed to
call the render method.
NOTE: this is not working completely yet, lots of code is still ifdefed
other parts are still broken.
The main difference for the new decoration API is that it is neither
QWidget nor QWindow based. It's just a QObject which processes input
events and has a paint method to render the decoration. This means all
the workarounds for the QWidget interception are removed. Also the paint
redirector is removed. Instead each compositor has now its own renderer
which can be optimized for the specific case. E.g. the OpenGL compositor
renders to a scratch image which gets copied into the combined texture,
the XRender compositor copies into the XPixmaps.
Input events are also changed. The events are composed into QMouseEvents
and passed through the decoration, which might accept them. If they are
not accpted we assume that it's a press on the decoration area allowing
us to resize/move the window. Input events are not completely working
yet, e.g. wheel events are not yet processed and double click on deco
is not yet working.
Overall KDecoration2 is way more stateful and KWin core needs more
adjustments for it. E.g. borders are allowed to be disabled at any time.
This backend uses an XShm pixmap for the rendering back buffer. In
present() the content of this shm pixmap is copied into a Wayland shm
buffer freeing the pixmap to be used for the next frame again and by that
we have a double buffered rendering.
In opposite to the X11 XRender backend this backend doesn't use the
overlay window.
Only the X based Scenes need an overlay window, so the Compositor doesn't
need to check for it in the Wayland case.
OverlayWindow is moved from OpenGLBackend to the sub classes which need
to provide it.
The egl wayland backend registers for the callback for a rendered frame.
This allows to throttle KWin's compositor so that we don't render frames
which wouldn't end up on the screen.
For this the Scene provides a method to query whether the last frame got
rendered. By default this returns true in all backends. The Egl Wayland
backend returns true or false depending on whether the callback for the
last frame was recieved.
In case the last frame has not been renderd when performCompositing is
tried to be called, the method returns just like in the case when the
overlay window is not visible. Once the frame callback has been recieved
performCompositing is invoked again.
An abstract backend is split out of SceneXRender which takes care of
managing the render pictures and swapping them after a frame is rendered.
Having this abstract allows to implement further backends for XRender
which do not use the Overlay Window for compositing.
To have it consistant the SceneXRender is now also created by a factory
method.
The pure virtual methods windowAdded, windowClosed, windowDeleted and
windowGeometryShapeChanged had identical implementations in both XRender
and OpenGL scene. They were accessing the hash with Scene::Windows which
is nowhere else used except for creating the stacking order in ::paint.
The implementations are moved to the base class, the only Scene specific
code is a pure virtual factory method to create the Scene window. This
already existed in SceneOpenGL to create either a SceneOpenGL1 or 2
window.
Also the hash of windows is a Scene private member now and the creation
of the stacking order is provided by a method, so that the Scene sub
classes do no longer need to access the stacking order at all.
REVIEW: 111207
Instead of having the Shadow factory method check the compositor type and
do the decision which Shadow sub class to create, a pure virtual method in
Scene is called which returns the specific Shadow sub class instance.
Instead of having the EffectFrameImpl check the compositor type and do
the decision which Scene::EffectFrame to create, a pure virtual method
in Scene is called which returns the specific Scene::EffectFrame.
The behavior for creating a pixmap for a window is moved from Toplevel
into a dedicated class WindowPixmap. Scene::Window holds a reference to
this class and creates a new WindowPixmap whenever the pixmap needs to be
discarded. In addition it also keeps the old WindowPixmap around for the
case that creating the new pixmap fails. The compositor can in that case
use the previous pixmap which reduces possible flickering. Also this
referencing can be used to improve transition effects like the maximize
windows effect which would benefit from starting with the old pixmap.
For XRender and OpenGL a dedicated sub-class of the WindowPixmap is
created which provides the additional mapping to an XRender picture and
OpenGL texture respectively.
BUG: 319563
FIXED-IN: 4.11
REVIEW: 110577
Instead of having a pointer to a QPixmap the offscreen target holds an
xcb_render_picture_t. To make this possible in SceneWindow the tempPixmap
is changed from a QPixmap* to a XRenderPicture*. QPixmap was only used
for convenience.
ScreenShot Effect as only user of the offscreen target is adjusted but
as it needs a QImage, still uses a QPixmap wrapper.
This follows how it is done for OpenGL where the renderRoundBox() got
dropped some time ago.
New implementation implements the box with round corners using xrender
directly instead of using a QPainter on a QPixmap.
The handling for creating and managing the OpenGL context is
split out of the SceneOpenGL into the abstract OpenGLBackend
and it's two subclasses GlxBackend and EglOnXBackend.
The backends take care of creating the OpenGL context on the
windowing system, e.g. on glx an OpenGL context on the overlay
window is created and in the egl case an EGL context is created.
This means that the SceneOpenGL itself does not have to care
about the specific underlying infrastructure.
Furthermore the backend provides the Textures for the specific
texture from pixmap operations. For that in each of the backend
files an additional subclass of the TexturePrivate is defined.
These subclasses hold the EglImage and GLXPixmap respectively.
The backend is able to create such a private texture and for
that the ctor of the Texture is changed to take the backend as
a parameter and the Scene provides a factory method for
creating Textures. To make this work inside Window the Textures
are now hold as pointers which seems a better choice anyway as
to the member functions pointers are passed.
did not publish function & enum in the baseclass, but inlined the accessor
REVIEW: 103232
(cherry picked from commit ecfa39ac3ca1c9823a6b320ff0f7a60ab32f0418)
This commit just makes the declaration of windowClosed() in Class Scene be a Q_SLOT.
The inheriting classes SceneOpenGL and SceneXRender are updated as well.
The method windowGeometryShapeChanged() from the class Scene is now a slot. It is now connected to the signal geometryShapeChanged() which is sent from Toplevel instances Client and Unmanaged.
All direct method calls were deleted.
The method windowOpacityChanged is now a protected slot in class Scene. The implementations in the subclasses SceneOpenGL and SceneXRender are the same. The slots are connected to the singal opacityChanged() from Toplevel. The connection is done in the method windowAdded() in both SceneOpenGL and SceneXRender.
The class Scene now inherits from QObject and has the Q_OBJECT macro. The inheriting classes SceneOpenGL and SceneXRender are provided with the Q_OBJECT macro. Now it is possible to use signals and slots and replace direct method calls.
Copies the shadow parts into one image and creates a GLTexture
from the image, so that we can render the complete shadow with
just one texture and one painting pass.
Should remove most of the overhead involved when rendering the new Shadows.
As a side effect this should fix missing shadows with non-NPOT GPUs and
a rendering glitch reported with NVIDIA.
REVIEW: 101742
Removes the last bits of the self-check at compositing startup.
It seems like they were only added to XRender because they were
in OpenGL and there they are not available for quite some time.
Also removes the now obsolete disable functionality checks from UI.
REVIEW: 101756