kwin/effects/coverswitch/coverswitch.cpp

1003 lines
41 KiB
C++
Raw Normal View History

2020-08-02 22:22:19 +00:00
/*
KWin - the KDE window manager
This file is part of the KDE project.
2020-08-02 22:22:19 +00:00
SPDX-FileCopyrightText: 2008 Martin Gräßlin <mgraesslin@kde.org>
2020-08-02 22:22:19 +00:00
SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "coverswitch.h"
// KConfigSkeleton
#include "coverswitchconfig.h"
#include <kwinconfig.h>
#include <QFile>
#include <QIcon>
#include <QMatrix4x4>
2011-03-13 15:56:25 +00:00
#include <QMouseEvent>
#include <QFontMetrics>
#include <KLocalizedString>
#include <kcolorscheme.h>
#include <kwinglplatform.h>
#include <cmath>
namespace KWin
{
CoverSwitchEffect::CoverSwitchEffect()
2011-01-30 14:34:42 +00:00
: mActivated(0)
, angle(60.0)
, animation(false)
, start(false)
, stop(false)
, stopRequested(false)
, startRequested(false)
Provide expected presentation time to effects Effects are given the interval between two consecutive frames. The main flaw of this approach is that if the Compositor transitions from the idle state to "active" state, i.e. when there is something to repaint, effects may see a very large interval between the last painted frame and the current. In order to address this issue, the Scene invalidates the timer that is used to measure time between consecutive frames before the Compositor is about to become idle. While this works perfectly fine with Xinerama-style rendering, with per screen rendering, determining whether the compositor is about to idle is rather a tedious task mostly because a single output can't be used for the test. Furthermore, since the Compositor schedules pointless repaints just to ensure that it's idle, it might take several attempts to figure out whether the scene timer must be invalidated if you use (true) per screen rendering. Ideally, all effects should use a timeline helper that is aware of the underlying render loop and its timings. However, this option is off the table because it will involve a lot of work to implement it. Alternative and much simpler option is to pass the expected presentation time to effects rather than time between consecutive frames. This means that effects are responsible for determining how much animation timelines have to be advanced. Typically, an effect would have to store the presentation timestamp provided in either prePaint{Screen,Window} and use it in the subsequent prePaint{Screen,Window} call to estimate the amount of time passed between the next and the last frames. Unfortunately, this is an API incompatible change. However, it shouldn't take a lot of work to port third-party binary effects, which don't use the AnimationEffect class, to the new API. On the bright side, we no longer need to be concerned about the Compositor getting idle. We do still try to determine whether the Compositor is about to idle, primarily, because the OpenGL render backend swaps buffers on present, but that will change with the ongoing compositing timing rework.
2020-11-20 15:44:04 +00:00
, lastPresentTime(std::chrono::milliseconds::zero())
2011-01-30 14:34:42 +00:00
, zPosition(900.0)
, scaleFactor(0.0)
, direction(Left)
, selected_window(nullptr)
, captionFrame(nullptr)
2011-01-30 14:34:42 +00:00
, primaryTabBox(false)
, secondaryTabBox(false)
{
initConfig<CoverSwitchConfig>();
2011-01-30 14:34:42 +00:00
reconfigure(ReconfigureAll);
// Caption frame
2011-01-30 14:34:42 +00:00
captionFont.setBold(true);
captionFont.setPointSize(captionFont.pointSize() * 2);
if (effects->compositingType() == OpenGL2Compositing) {
m_reflectionShader = ShaderManager::instance()->generateShaderFromResources(ShaderTrait::MapTexture, QString(), QStringLiteral("coverswitch-reflection.glsl"));
} else {
m_reflectionShader = nullptr;
}
connect(effects, &EffectsHandler::windowClosed, this, &CoverSwitchEffect::slotWindowClosed);
connect(effects, &EffectsHandler::tabBoxAdded, this, &CoverSwitchEffect::slotTabBoxAdded);
connect(effects, &EffectsHandler::tabBoxClosed, this, &CoverSwitchEffect::slotTabBoxClosed);
connect(effects, &EffectsHandler::tabBoxUpdated, this, &CoverSwitchEffect::slotTabBoxUpdated);
connect(effects, &EffectsHandler::tabBoxKeyEvent, this, &CoverSwitchEffect::slotTabBoxKeyEvent);
2011-01-30 14:34:42 +00:00
}
CoverSwitchEffect::~CoverSwitchEffect()
2011-01-30 14:34:42 +00:00
{
delete captionFrame;
delete m_reflectionShader;
2011-01-30 14:34:42 +00:00
}
bool CoverSwitchEffect::supported()
2011-01-30 14:34:42 +00:00
{
return effects->isOpenGLCompositing() && effects->animationsSupported();
2011-01-30 14:34:42 +00:00
}
2011-01-30 14:34:42 +00:00
void CoverSwitchEffect::reconfigure(ReconfigureFlags)
{
CoverSwitchConfig::self()->read();
animationDuration = std::chrono::milliseconds(
animationTime<CoverSwitchConfig>(200));
animateSwitch = CoverSwitchConfig::animateSwitch();
animateStart = CoverSwitchConfig::animateStart();
animateStop = CoverSwitchConfig::animateStop();
reflection = CoverSwitchConfig::reflection();
windowTitle = CoverSwitchConfig::windowTitle();
zPosition = CoverSwitchConfig::zPosition();
timeLine.setEasingCurve(QEasingCurve::InOutSine);
2011-01-30 14:34:42 +00:00
timeLine.setDuration(animationDuration);
// Defined outside the ui
primaryTabBox = CoverSwitchConfig::tabBox();
secondaryTabBox = CoverSwitchConfig::tabBoxAlternative();
QColor tmp = CoverSwitchConfig::mirrorFrontColor();
mirrorColor[0][0] = tmp.redF();
mirrorColor[0][1] = tmp.greenF();
mirrorColor[0][2] = tmp.blueF();
mirrorColor[0][3] = 1.0;
tmp = CoverSwitchConfig::mirrorRearColor();
mirrorColor[1][0] = tmp.redF();
mirrorColor[1][1] = tmp.greenF();
mirrorColor[1][2] = tmp.blueF();
mirrorColor[1][3] = -1.0;
2011-01-30 14:34:42 +00:00
}
Provide expected presentation time to effects Effects are given the interval between two consecutive frames. The main flaw of this approach is that if the Compositor transitions from the idle state to "active" state, i.e. when there is something to repaint, effects may see a very large interval between the last painted frame and the current. In order to address this issue, the Scene invalidates the timer that is used to measure time between consecutive frames before the Compositor is about to become idle. While this works perfectly fine with Xinerama-style rendering, with per screen rendering, determining whether the compositor is about to idle is rather a tedious task mostly because a single output can't be used for the test. Furthermore, since the Compositor schedules pointless repaints just to ensure that it's idle, it might take several attempts to figure out whether the scene timer must be invalidated if you use (true) per screen rendering. Ideally, all effects should use a timeline helper that is aware of the underlying render loop and its timings. However, this option is off the table because it will involve a lot of work to implement it. Alternative and much simpler option is to pass the expected presentation time to effects rather than time between consecutive frames. This means that effects are responsible for determining how much animation timelines have to be advanced. Typically, an effect would have to store the presentation timestamp provided in either prePaint{Screen,Window} and use it in the subsequent prePaint{Screen,Window} call to estimate the amount of time passed between the next and the last frames. Unfortunately, this is an API incompatible change. However, it shouldn't take a lot of work to port third-party binary effects, which don't use the AnimationEffect class, to the new API. On the bright side, we no longer need to be concerned about the Compositor getting idle. We do still try to determine whether the Compositor is about to idle, primarily, because the OpenGL render backend swaps buffers on present, but that will change with the ongoing compositing timing rework.
2020-11-20 15:44:04 +00:00
void CoverSwitchEffect::prePaintScreen(ScreenPrePaintData& data, std::chrono::milliseconds presentTime)
2011-01-30 14:34:42 +00:00
{
Provide expected presentation time to effects Effects are given the interval between two consecutive frames. The main flaw of this approach is that if the Compositor transitions from the idle state to "active" state, i.e. when there is something to repaint, effects may see a very large interval between the last painted frame and the current. In order to address this issue, the Scene invalidates the timer that is used to measure time between consecutive frames before the Compositor is about to become idle. While this works perfectly fine with Xinerama-style rendering, with per screen rendering, determining whether the compositor is about to idle is rather a tedious task mostly because a single output can't be used for the test. Furthermore, since the Compositor schedules pointless repaints just to ensure that it's idle, it might take several attempts to figure out whether the scene timer must be invalidated if you use (true) per screen rendering. Ideally, all effects should use a timeline helper that is aware of the underlying render loop and its timings. However, this option is off the table because it will involve a lot of work to implement it. Alternative and much simpler option is to pass the expected presentation time to effects rather than time between consecutive frames. This means that effects are responsible for determining how much animation timelines have to be advanced. Typically, an effect would have to store the presentation timestamp provided in either prePaint{Screen,Window} and use it in the subsequent prePaint{Screen,Window} call to estimate the amount of time passed between the next and the last frames. Unfortunately, this is an API incompatible change. However, it shouldn't take a lot of work to port third-party binary effects, which don't use the AnimationEffect class, to the new API. On the bright side, we no longer need to be concerned about the Compositor getting idle. We do still try to determine whether the Compositor is about to idle, primarily, because the OpenGL render backend swaps buffers on present, but that will change with the ongoing compositing timing rework.
2020-11-20 15:44:04 +00:00
std::chrono::milliseconds delta = std::chrono::milliseconds::zero();
if (lastPresentTime.count()) {
delta = presentTime - lastPresentTime;
}
lastPresentTime = presentTime;
2011-01-30 14:34:42 +00:00
if (mActivated || stop || stopRequested) {
data.mask |= Effect::PAINT_SCREEN_WITH_TRANSFORMED_WINDOWS;
2011-01-30 14:34:42 +00:00
if (animation || start || stop) {
Provide expected presentation time to effects Effects are given the interval between two consecutive frames. The main flaw of this approach is that if the Compositor transitions from the idle state to "active" state, i.e. when there is something to repaint, effects may see a very large interval between the last painted frame and the current. In order to address this issue, the Scene invalidates the timer that is used to measure time between consecutive frames before the Compositor is about to become idle. While this works perfectly fine with Xinerama-style rendering, with per screen rendering, determining whether the compositor is about to idle is rather a tedious task mostly because a single output can't be used for the test. Furthermore, since the Compositor schedules pointless repaints just to ensure that it's idle, it might take several attempts to figure out whether the scene timer must be invalidated if you use (true) per screen rendering. Ideally, all effects should use a timeline helper that is aware of the underlying render loop and its timings. However, this option is off the table because it will involve a lot of work to implement it. Alternative and much simpler option is to pass the expected presentation time to effects rather than time between consecutive frames. This means that effects are responsible for determining how much animation timelines have to be advanced. Typically, an effect would have to store the presentation timestamp provided in either prePaint{Screen,Window} and use it in the subsequent prePaint{Screen,Window} call to estimate the amount of time passed between the next and the last frames. Unfortunately, this is an API incompatible change. However, it shouldn't take a lot of work to port third-party binary effects, which don't use the AnimationEffect class, to the new API. On the bright side, we no longer need to be concerned about the Compositor getting idle. We do still try to determine whether the Compositor is about to idle, primarily, because the OpenGL render backend swaps buffers on present, but that will change with the ongoing compositing timing rework.
2020-11-20 15:44:04 +00:00
timeLine.update(delta);
}
if (selected_window == nullptr)
2011-01-30 14:34:42 +00:00
abort();
}
Provide expected presentation time to effects Effects are given the interval between two consecutive frames. The main flaw of this approach is that if the Compositor transitions from the idle state to "active" state, i.e. when there is something to repaint, effects may see a very large interval between the last painted frame and the current. In order to address this issue, the Scene invalidates the timer that is used to measure time between consecutive frames before the Compositor is about to become idle. While this works perfectly fine with Xinerama-style rendering, with per screen rendering, determining whether the compositor is about to idle is rather a tedious task mostly because a single output can't be used for the test. Furthermore, since the Compositor schedules pointless repaints just to ensure that it's idle, it might take several attempts to figure out whether the scene timer must be invalidated if you use (true) per screen rendering. Ideally, all effects should use a timeline helper that is aware of the underlying render loop and its timings. However, this option is off the table because it will involve a lot of work to implement it. Alternative and much simpler option is to pass the expected presentation time to effects rather than time between consecutive frames. This means that effects are responsible for determining how much animation timelines have to be advanced. Typically, an effect would have to store the presentation timestamp provided in either prePaint{Screen,Window} and use it in the subsequent prePaint{Screen,Window} call to estimate the amount of time passed between the next and the last frames. Unfortunately, this is an API incompatible change. However, it shouldn't take a lot of work to port third-party binary effects, which don't use the AnimationEffect class, to the new API. On the bright side, we no longer need to be concerned about the Compositor getting idle. We do still try to determine whether the Compositor is about to idle, primarily, because the OpenGL render backend swaps buffers on present, but that will change with the ongoing compositing timing rework.
2020-11-20 15:44:04 +00:00
effects->prePaintScreen(data, presentTime);
2011-01-30 14:34:42 +00:00
}
void CoverSwitchEffect::paintScreen(int mask, const QRegion &region, ScreenPaintData& data)
2011-01-30 14:34:42 +00:00
{
effects->paintScreen(mask, region, data);
2011-01-30 14:34:42 +00:00
if (mActivated || stop || stopRequested) {
QList< EffectWindow* > tempList = currentWindowList;
2011-01-30 14:34:42 +00:00
int index = tempList.indexOf(selected_window);
if (animation || start || stop) {
if (!start && !stop) {
if (direction == Right)
index++;
else
index--;
2011-01-30 14:34:42 +00:00
if (index < 0)
index = tempList.count() + index;
2011-01-30 14:34:42 +00:00
if (index >= tempList.count())
index = index % tempList.count();
2011-01-30 14:34:42 +00:00
}
foreach (Direction direction, scheduled_directions) {
if (direction == Right)
index++;
else
index--;
2011-01-30 14:34:42 +00:00
if (index < 0)
index = tempList.count() + index;
2011-01-30 14:34:42 +00:00
if (index >= tempList.count())
index = index % tempList.count();
}
2011-01-30 14:34:42 +00:00
}
int leftIndex = index - 1;
if (leftIndex < 0)
leftIndex = tempList.count() - 1;
int rightIndex = index + 1;
if (rightIndex == tempList.count())
rightIndex = 0;
EffectWindow* frontWindow = tempList[ index ];
leftWindows.clear();
rightWindows.clear();
2011-01-30 14:34:42 +00:00
bool evenWindows = (tempList.count() % 2 == 0) ? true : false;
int leftWindowCount = 0;
2011-01-30 14:34:42 +00:00
if (evenWindows)
leftWindowCount = tempList.count() / 2 - 1;
else
2011-01-30 14:34:42 +00:00
leftWindowCount = (tempList.count() - 1) / 2;
for (int i = 0; i < leftWindowCount; i++) {
int tempIndex = (leftIndex - i);
if (tempIndex < 0)
tempIndex = tempList.count() + tempIndex;
2011-01-30 14:34:42 +00:00
leftWindows.prepend(tempList[ tempIndex ]);
}
int rightWindowCount = 0;
2011-01-30 14:34:42 +00:00
if (evenWindows)
rightWindowCount = tempList.count() / 2;
else
2011-01-30 14:34:42 +00:00
rightWindowCount = (tempList.count() - 1) / 2;
for (int i = 0; i < rightWindowCount; i++) {
int tempIndex = (rightIndex + i) % tempList.count();
rightWindows.prepend(tempList[ tempIndex ]);
}
2011-01-30 14:34:42 +00:00
if (reflection) {
// no reflections during start and stop animation
// except when using a shader
if ((!start && !stop) || effects->compositingType() == OpenGL2Compositing)
2011-01-30 14:34:42 +00:00
paintScene(frontWindow, leftWindows, rightWindows, true);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// we can use a huge scale factor (needed to calculate the rearground vertices)
// as we restrict with a PaintClipper painting on the current screen
2011-01-30 14:34:42 +00:00
float reflectionScaleFactor = 100000 * tan(60.0 * M_PI / 360.0f) / area.width();
const float width = area.width();
const float height = area.height();
float vertices[] = {
-width * 0.5f, height, 0.0,
width * 0.5f, height, 0.0,
width*reflectionScaleFactor, height, -5000,
-width*reflectionScaleFactor, height, -5000
2011-01-30 14:34:42 +00:00
};
// foreground
if (start) {
mirrorColor[0][3] = timeLine.value();
} else if (stop) {
mirrorColor[0][3] = 1.0 - timeLine.value();
} else {
mirrorColor[0][3] = 1.0;
}
int y = 0;
// have to adjust the y values to fit OpenGL
// in OpenGL y==0 is at bottom, in Qt at top
2011-01-30 14:34:42 +00:00
if (effects->numScreens() > 1) {
QRect fullArea = effects->clientArea(FullArea, 0, 1);
if (fullArea.height() != area.height()) {
if (area.y() == 0)
y = fullArea.height() - area.height();
else
y = fullArea.height() - area.y() - area.height();
}
2011-01-30 14:34:42 +00:00
}
// use scissor to restrict painting of the reflection plane to current screen
2011-01-30 14:34:42 +00:00
glScissor(area.x(), y, area.width(), area.height());
glEnable(GL_SCISSOR_TEST);
if (m_reflectionShader && m_reflectionShader->isValid()) {
ShaderManager::instance()->pushShader(m_reflectionShader);
QMatrix4x4 windowTransformation = data.projectionMatrix();
2011-01-30 14:34:42 +00:00
windowTransformation.translate(area.x() + area.width() * 0.5f, 0.0, 0.0);
m_reflectionShader->setUniform(GLShader::ModelViewProjectionMatrix, windowTransformation);
m_reflectionShader->setUniform("u_frontColor", QVector4D(mirrorColor[0][0], mirrorColor[0][1], mirrorColor[0][2], mirrorColor[0][3]));
m_reflectionShader->setUniform("u_backColor", QVector4D(mirrorColor[1][0], mirrorColor[1][1], mirrorColor[1][2], mirrorColor[1][3]));
// TODO: make this one properly
QVector<float> verts;
QVector<float> texcoords;
verts.reserve(18);
texcoords.reserve(12);
texcoords << 1.0 << 0.0;
verts << vertices[6] << vertices[7] << vertices[8];
texcoords << 1.0 << 0.0;
verts << vertices[9] << vertices[10] << vertices[11];
texcoords << 0.0 << 0.0;
verts << vertices[0] << vertices[1] << vertices[2];
texcoords << 0.0 << 0.0;
verts << vertices[0] << vertices[1] << vertices[2];
texcoords << 0.0 << 0.0;
verts << vertices[3] << vertices[4] << vertices[5];
texcoords << 1.0 << 0.0;
verts << vertices[6] << vertices[7] << vertices[8];
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
vbo->reset();
vbo->setData(6, 3, verts.data(), texcoords.data());
vbo->render(GL_TRIANGLES);
ShaderManager::instance()->popShader();
}
2011-01-30 14:34:42 +00:00
glDisable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
}
paintScene(frontWindow, leftWindows, rightWindows);
// Render the caption frame
2011-01-30 14:34:42 +00:00
if (windowTitle) {
double opacity = 1.0;
2011-01-30 14:34:42 +00:00
if (start)
opacity = timeLine.value();
2011-01-30 14:34:42 +00:00
else if (stop)
opacity = 1.0 - timeLine.value();
2011-01-30 14:34:42 +00:00
if (animation)
captionFrame->setCrossFadeProgress(timeLine.value());
2011-01-30 14:34:42 +00:00
captionFrame->render(region, opacity);
}
}
2011-01-30 14:34:42 +00:00
}
void CoverSwitchEffect::postPaintScreen()
2011-01-30 14:34:42 +00:00
{
if ((mActivated && (animation || start)) || stop || stopRequested) {
if (timeLine.done()) {
timeLine.reset();
2011-01-30 14:34:42 +00:00
if (stop) {
stop = false;
effects->setActiveFullScreenEffect(nullptr);
2011-01-30 14:34:42 +00:00
foreach (EffectWindow * window, referrencedWindows) {
window->unrefWindow();
2011-01-30 14:34:42 +00:00
}
referrencedWindows.clear();
currentWindowList.clear();
Provide expected presentation time to effects Effects are given the interval between two consecutive frames. The main flaw of this approach is that if the Compositor transitions from the idle state to "active" state, i.e. when there is something to repaint, effects may see a very large interval between the last painted frame and the current. In order to address this issue, the Scene invalidates the timer that is used to measure time between consecutive frames before the Compositor is about to become idle. While this works perfectly fine with Xinerama-style rendering, with per screen rendering, determining whether the compositor is about to idle is rather a tedious task mostly because a single output can't be used for the test. Furthermore, since the Compositor schedules pointless repaints just to ensure that it's idle, it might take several attempts to figure out whether the scene timer must be invalidated if you use (true) per screen rendering. Ideally, all effects should use a timeline helper that is aware of the underlying render loop and its timings. However, this option is off the table because it will involve a lot of work to implement it. Alternative and much simpler option is to pass the expected presentation time to effects rather than time between consecutive frames. This means that effects are responsible for determining how much animation timelines have to be advanced. Typically, an effect would have to store the presentation timestamp provided in either prePaint{Screen,Window} and use it in the subsequent prePaint{Screen,Window} call to estimate the amount of time passed between the next and the last frames. Unfortunately, this is an API incompatible change. However, it shouldn't take a lot of work to port third-party binary effects, which don't use the AnimationEffect class, to the new API. On the bright side, we no longer need to be concerned about the Compositor getting idle. We do still try to determine whether the Compositor is about to idle, primarily, because the OpenGL render backend swaps buffers on present, but that will change with the ongoing compositing timing rework.
2020-11-20 15:44:04 +00:00
lastPresentTime = std::chrono::milliseconds::zero();
2011-01-30 14:34:42 +00:00
if (startRequested) {
startRequested = false;
mActivated = true;
effects->refTabBox();
currentWindowList = effects->currentTabBoxWindowList();
2011-01-30 14:34:42 +00:00
if (animateStart) {
start = true;
}
}
2011-01-30 14:34:42 +00:00
} else if (!scheduled_directions.isEmpty()) {
direction = scheduled_directions.dequeue();
2011-01-30 14:34:42 +00:00
if (start) {
animation = true;
start = false;
}
2011-01-30 14:34:42 +00:00
} else {
animation = false;
start = false;
2011-01-30 14:34:42 +00:00
if (stopRequested) {
stopRequested = false;
stop = true;
}
}
}
2011-01-30 14:34:42 +00:00
effects->addRepaintFull();
}
2011-01-30 14:34:42 +00:00
effects->postPaintScreen();
}
2011-01-30 14:34:42 +00:00
void CoverSwitchEffect::paintScene(EffectWindow* frontWindow, const EffectWindowList& leftWindows,
const EffectWindowList& rightWindows, bool reflectedWindows)
{
// LAYOUT
// one window in the front. Other windows left and right rotated
// for odd number of windows: left: (n-1)/2; front: 1; right: (n-1)/2
// for even number of windows: left: n/2; front: 1; right: n/2 -1
//
// ANIMATION
// forward (alt+tab)
// all left windows are moved to next position
// top most left window is rotated and moved to front window position
// front window is rotated and moved to next right window position
// right windows are moved to next position
// last right window becomes totally transparent in half the time
// appears transparent on left side and becomes totally opaque again
// backward (alt+shift+tab) same as forward but opposite direction
int width = area.width();
int leftWindowCount = leftWindows.count();
int rightWindowCount = rightWindows.count();
// Problem during animation: a window which is painted after another window
// appears in front of the other
// so during animation the painting order has to be rearreanged
// paint sequence no animation: left, right, front
// paint sequence forward animation: right, front, left
2011-01-30 14:34:42 +00:00
if (!animation) {
paintWindows(leftWindows, true, reflectedWindows);
paintWindows(rightWindows, false, reflectedWindows);
paintFrontWindow(frontWindow, width, leftWindowCount, rightWindowCount, reflectedWindows);
} else {
if (direction == Right) {
if (timeLine.value() < 0.5) {
// paint in normal way
2011-01-30 14:34:42 +00:00
paintWindows(leftWindows, true, reflectedWindows);
paintWindows(rightWindows, false, reflectedWindows);
paintFrontWindow(frontWindow, width, leftWindowCount, rightWindowCount, reflectedWindows);
} else {
paintWindows(rightWindows, false, reflectedWindows);
paintFrontWindow(frontWindow, width, leftWindowCount, rightWindowCount, reflectedWindows);
paintWindows(leftWindows, true, reflectedWindows, rightWindows.at(0));
}
2011-01-30 14:34:42 +00:00
} else {
paintWindows(leftWindows, true, reflectedWindows);
if (timeLine.value() < 0.5) {
2011-01-30 14:34:42 +00:00
paintWindows(rightWindows, false, reflectedWindows);
paintFrontWindow(frontWindow, width, leftWindowCount, rightWindowCount, reflectedWindows);
} else {
EffectWindow* leftWindow;
2011-01-30 14:34:42 +00:00
if (leftWindowCount > 0) {
leftWindow = leftWindows.at(0);
paintFrontWindow(frontWindow, width, leftWindowCount, rightWindowCount, reflectedWindows);
} else
leftWindow = frontWindow;
2011-01-30 14:34:42 +00:00
paintWindows(rightWindows, false, reflectedWindows, leftWindow);
}
}
}
2011-01-30 14:34:42 +00:00
}
2011-01-30 14:34:42 +00:00
void CoverSwitchEffect::paintWindow(EffectWindow* w, int mask, QRegion region, WindowPaintData& data)
{
if (mActivated || stop || stopRequested) {
if (!(mask & PAINT_WINDOW_TRANSFORMED) && !w->isDesktop()) {
if ((start || stop) && w->isDock()) {
data.setOpacity(1.0 - timeLine.value());
2011-01-30 14:34:42 +00:00
if (stop)
data.setOpacity(timeLine.value());
2011-01-30 14:34:42 +00:00
} else
return;
}
2011-01-30 14:34:42 +00:00
}
if ((start || stop) && (!w->isOnCurrentDesktop() || w->isMinimized())) {
if (stop) // Fade out windows not on the current desktop
data.setOpacity(1.0 - timeLine.value());
else // Fade in Windows from other desktops when animation is started
data.setOpacity(timeLine.value());
}
2011-01-30 14:34:42 +00:00
effects->paintWindow(w, mask, region, data);
}
void CoverSwitchEffect::slotTabBoxAdded(int mode)
2011-01-30 14:34:42 +00:00
{
if (effects->activeFullScreenEffect() && effects->activeFullScreenEffect() != this)
return;
2011-01-30 14:34:42 +00:00
if (!mActivated) {
effects->setShowingDesktop(false);
// only for windows mode
2011-01-30 14:34:42 +00:00
if (((mode == TabBoxWindowsMode && primaryTabBox) ||
(mode == TabBoxWindowsAlternativeMode && secondaryTabBox) ||
(mode == TabBoxCurrentAppWindowsMode && primaryTabBox) ||
(mode == TabBoxCurrentAppWindowsAlternativeMode && secondaryTabBox))
2011-01-30 14:34:42 +00:00
&& effects->currentTabBoxWindowList().count() > 0) {
effects->startMouseInterception(this, Qt::ArrowCursor);
activeScreen = effects->activeScreen();
2011-01-30 14:34:42 +00:00
if (!stop && !stopRequested) {
effects->refTabBox();
2011-01-30 14:34:42 +00:00
effects->setActiveFullScreenEffect(this);
scheduled_directions.clear();
selected_window = effects->currentTabBoxWindow();
currentWindowList = effects->currentTabBoxWindowList();
direction = Left;
mActivated = true;
2011-01-30 14:34:42 +00:00
if (animateStart) {
start = true;
2011-01-30 14:34:42 +00:00
}
// Calculation of correct area
2011-01-30 14:34:42 +00:00
area = effects->clientArea(FullScreenArea, activeScreen, effects->currentDesktop());
const QSize screenSize = effects->virtualScreenSize();
scaleFactor = (zPosition + 1100) * 2.0 * tan(60.0 * M_PI / 360.0f) / screenSize.width();
if (screenSize.width() - area.width() != 0) {
// one of the screens is smaller than the other (horizontal)
if (area.width() < screenSize.width() - area.width())
scaleFactor *= (float)area.width() / (float)(screenSize.width() - area.width());
else if (area.width() != screenSize.width() - area.width()) {
// vertical layout with different width
// but we don't want to catch screens with same width and different height
if (screenSize.height() != area.height())
scaleFactor *= (float)area.width() / (float)(screenSize.width());
}
2011-01-30 14:34:42 +00:00
}
if (effects->numScreens() > 1) {
// unfortunatelly we have to change the projection matrix in dual screen mode
// code is adapted from SceneOpenGL2::createProjectionMatrix()
QRect fullRect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
float fovy = 60.0f;
float aspect = 1.0f;
float zNear = 0.1f;
float zFar = 100.0f;
float ymax = zNear * std::tan(fovy * M_PI / 360.0f);
float ymin = -ymax;
float xmin = ymin * aspect;
float xmax = ymax * aspect;
if (area.width() != fullRect.width()) {
if (area.x() == 0) {
// horizontal layout: left screen
xmin *= (float)area.width() / (float)fullRect.width();
xmax *= (fullRect.width() - 0.5f * area.width()) / (0.5f * fullRect.width());
} else {
// horizontal layout: right screen
xmin *= (fullRect.width() - 0.5f * area.width()) / (0.5f * fullRect.width());
xmax *= (float)area.width() / (float)fullRect.width();
}
}
if (area.height() != fullRect.height()) {
if (area.y() == 0) {
// vertical layout: top screen
ymin *= (fullRect.height() - 0.5f * area.height()) / (0.5f * fullRect.height());
ymax *= (float)area.height() / (float)fullRect.height();
} else {
// vertical layout: bottom screen
ymin *= (float)area.height() / (float)fullRect.height();
ymax *= (fullRect.height() - 0.5f * area.height()) / (0.5f * fullRect.height());
}
}
m_projectionMatrix = QMatrix4x4();
m_projectionMatrix.frustum(xmin, xmax, ymin, ymax, zNear, zFar);
const float scaleFactor = 1.1f / zNear;
// Create a second matrix that transforms screen coordinates
// to world coordinates.
QMatrix4x4 matrix;
matrix.translate(xmin * scaleFactor, ymax * scaleFactor, -1.1);
matrix.scale( (xmax - xmin) * scaleFactor / fullRect.width(),
-(ymax - ymin) * scaleFactor / fullRect.height(),
0.001);
// Combine the matrices
m_projectionMatrix *= matrix;
m_modelviewMatrix = QMatrix4x4();
m_modelviewMatrix.translate(area.x(), area.y(), 0.0);
}
// Setup caption frame geometry
2011-01-30 14:34:42 +00:00
if (windowTitle) {
QRect frameRect = QRect(area.width() * 0.25f + area.x(),
area.height() * 0.9f + area.y(),
area.width() * 0.5f,
QFontMetrics(captionFont).height());
if (!captionFrame) {
captionFrame = effects->effectFrame(EffectFrameStyled);
captionFrame->setFont(captionFont);
captionFrame->enableCrossFade(true);
}
2011-01-30 14:34:42 +00:00
captionFrame->setGeometry(frameRect);
captionFrame->setIconSize(QSize(frameRect.height(), frameRect.height()));
// And initial contents
updateCaption();
}
effects->addRepaintFull();
2011-01-30 14:34:42 +00:00
} else {
startRequested = true;
}
}
}
2011-01-30 14:34:42 +00:00
}
void CoverSwitchEffect::slotTabBoxClosed()
2011-01-30 14:34:42 +00:00
{
if (mActivated) {
if (animateStop) {
if (!animation && !start) {
stop = true;
2011-01-30 14:34:42 +00:00
} else if (start && scheduled_directions.isEmpty()) {
start = false;
stop = true;
timeLine.setElapsed(timeLine.duration() - timeLine.elapsed());
2011-01-30 14:34:42 +00:00
} else {
stopRequested = true;
}
} else {
effects->setActiveFullScreenEffect(nullptr);
start = false;
animation = false;
timeLine.reset();
Provide expected presentation time to effects Effects are given the interval between two consecutive frames. The main flaw of this approach is that if the Compositor transitions from the idle state to "active" state, i.e. when there is something to repaint, effects may see a very large interval between the last painted frame and the current. In order to address this issue, the Scene invalidates the timer that is used to measure time between consecutive frames before the Compositor is about to become idle. While this works perfectly fine with Xinerama-style rendering, with per screen rendering, determining whether the compositor is about to idle is rather a tedious task mostly because a single output can't be used for the test. Furthermore, since the Compositor schedules pointless repaints just to ensure that it's idle, it might take several attempts to figure out whether the scene timer must be invalidated if you use (true) per screen rendering. Ideally, all effects should use a timeline helper that is aware of the underlying render loop and its timings. However, this option is off the table because it will involve a lot of work to implement it. Alternative and much simpler option is to pass the expected presentation time to effects rather than time between consecutive frames. This means that effects are responsible for determining how much animation timelines have to be advanced. Typically, an effect would have to store the presentation timestamp provided in either prePaint{Screen,Window} and use it in the subsequent prePaint{Screen,Window} call to estimate the amount of time passed between the next and the last frames. Unfortunately, this is an API incompatible change. However, it shouldn't take a lot of work to port third-party binary effects, which don't use the AnimationEffect class, to the new API. On the bright side, we no longer need to be concerned about the Compositor getting idle. We do still try to determine whether the Compositor is about to idle, primarily, because the OpenGL render backend swaps buffers on present, but that will change with the ongoing compositing timing rework.
2020-11-20 15:44:04 +00:00
lastPresentTime = std::chrono::milliseconds::zero();
}
mActivated = false;
effects->unrefTabBox();
effects->stopMouseInterception(this);
effects->addRepaintFull();
}
2011-01-30 14:34:42 +00:00
}
void CoverSwitchEffect::slotTabBoxUpdated()
2011-01-30 14:34:42 +00:00
{
if (mActivated) {
if (animateSwitch && currentWindowList.count() > 1) {
// determine the switch direction
2011-01-30 14:34:42 +00:00
if (selected_window != effects->currentTabBoxWindow()) {
if (selected_window != nullptr) {
2011-01-30 14:34:42 +00:00
int old_index = currentWindowList.indexOf(selected_window);
int new_index = effects->currentTabBoxWindowList().indexOf(effects->currentTabBoxWindow());
Direction new_direction;
int distance = new_index - old_index;
2011-01-30 14:34:42 +00:00
if (distance > 0)
new_direction = Left;
2011-01-30 14:34:42 +00:00
if (distance < 0)
new_direction = Right;
2011-01-30 14:34:42 +00:00
if (effects->currentTabBoxWindowList().count() == 2) {
new_direction = Left;
distance = 1;
2011-01-30 14:34:42 +00:00
}
if (distance != 0) {
distance = abs(distance);
int tempDistance = effects->currentTabBoxWindowList().count() - distance;
2011-01-30 14:34:42 +00:00
if (tempDistance < abs(distance)) {
distance = tempDistance;
2011-01-30 14:34:42 +00:00
if (new_direction == Left)
new_direction = Right;
else
new_direction = Left;
2011-01-30 14:34:42 +00:00
}
if (!animation && !start) {
animation = true;
direction = new_direction;
distance--;
2011-01-30 14:34:42 +00:00
}
for (int i = 0; i < distance; i++) {
if (!scheduled_directions.isEmpty() && scheduled_directions.last() != new_direction)
scheduled_directions.pop_back();
else
2011-01-30 14:34:42 +00:00
scheduled_directions.enqueue(new_direction);
if (scheduled_directions.count() == effects->currentTabBoxWindowList().count())
scheduled_directions.clear();
}
}
2011-01-30 14:34:42 +00:00
}
selected_window = effects->currentTabBoxWindow();
currentWindowList = effects->currentTabBoxWindowList();
updateCaption();
}
}
2011-01-30 14:34:42 +00:00
effects->addRepaintFull();
}
2011-01-30 14:34:42 +00:00
}
2011-01-30 14:34:42 +00:00
void CoverSwitchEffect::paintWindowCover(EffectWindow* w, bool reflectedWindow, WindowPaintData& data)
{
QRect windowRect = w->geometry();
data.setYTranslation(area.height() - windowRect.y() - windowRect.height());
data.setZTranslation(-zPosition);
2011-01-30 14:34:42 +00:00
if (start) {
if (w->isMinimized()) {
data.multiplyOpacity(timeLine.value());
2011-01-30 14:34:42 +00:00
} else {
const QVector3D translation = data.translation() * timeLine.value();
data.setXTranslation(translation.x());
data.setYTranslation(translation.y());
data.setZTranslation(translation.z());
2011-01-30 14:34:42 +00:00
if (effects->numScreens() > 1) {
QRect clientRect = effects->clientArea(FullScreenArea, w->screen(), effects->currentDesktop());
QRect fullRect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
if (w->screen() == activeScreen) {
if (clientRect.width() != fullRect.width() && clientRect.x() != fullRect.x()) {
data.translate(- clientRect.x() * (1.0f - timeLine.value()));
}
2011-01-30 14:34:42 +00:00
if (clientRect.height() != fullRect.height() && clientRect.y() != fullRect.y()) {
data.translate(0.0, - clientRect.y() * (1.0f - timeLine.value()));
2011-01-30 14:34:42 +00:00
}
} else {
if (clientRect.width() != fullRect.width() && clientRect.x() < area.x()) {
data.translate(- clientRect.width() * (1.0f - timeLine.value()));
2011-01-30 14:34:42 +00:00
}
if (clientRect.height() != fullRect.height() && clientRect.y() < area.y()) {
data.translate(0.0, - clientRect.height() * (1.0f - timeLine.value()));
}
}
2011-01-30 14:34:42 +00:00
}
data.setRotationAngle(data.rotationAngle() * timeLine.value());
}
2011-01-30 14:34:42 +00:00
}
if (stop) {
if (w->isMinimized() && w != effects->activeWindow()) {
data.multiplyOpacity(1.0 - timeLine.value());
2011-01-30 14:34:42 +00:00
} else {
const QVector3D translation = data.translation() * (1.0 - timeLine.value());
data.setXTranslation(translation.x());
data.setYTranslation(translation.y());
data.setZTranslation(translation.z());
2011-01-30 14:34:42 +00:00
if (effects->numScreens() > 1) {
QRect clientRect = effects->clientArea(FullScreenArea, w->screen(), effects->currentDesktop());
QRect rect = effects->clientArea(FullScreenArea, activeScreen, effects->currentDesktop());
QRect fullRect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
if (w->screen() == activeScreen) {
if (clientRect.width() != fullRect.width() && clientRect.x() != fullRect.x()) {
data.translate(- clientRect.x() * timeLine.value());
}
2011-01-30 14:34:42 +00:00
if (clientRect.height() != fullRect.height() && clientRect.y() != fullRect.y()) {
data.translate(0.0, - clientRect.y() * timeLine.value());
2011-01-30 14:34:42 +00:00
}
} else {
if (clientRect.width() != fullRect.width() && clientRect.x() < rect.x()) {
data.translate(- clientRect.width() * timeLine.value());
2011-01-30 14:34:42 +00:00
}
if (clientRect.height() != fullRect.height() && clientRect.y() < area.y()) {
data.translate(0.0, - clientRect.height() * timeLine.value());
}
}
2011-01-30 14:34:42 +00:00
}
data.setRotationAngle(data.rotationAngle() * (1.0 - timeLine.value()));
}
2011-01-30 14:34:42 +00:00
}
2011-01-30 14:34:42 +00:00
if (reflectedWindow) {
QMatrix4x4 reflectionMatrix;
reflectionMatrix.scale(1.0, -1.0, 1.0);
data.setModelViewMatrix(reflectionMatrix*data.modelViewMatrix());
data.setYTranslation(- area.height() - windowRect.y() - windowRect.height());
if (start) {
data.multiplyOpacity(timeLine.value());
} else if (stop) {
data.multiplyOpacity(1.0 - timeLine.value());
}
effects->drawWindow(w,
PAINT_WINDOW_TRANSFORMED,
infiniteRegion(), data);
2011-01-30 14:34:42 +00:00
} else {
effects->paintWindow(w,
PAINT_WINDOW_TRANSFORMED,
infiniteRegion(), data);
}
2011-01-30 14:34:42 +00:00
}
2011-01-30 14:34:42 +00:00
void CoverSwitchEffect::paintFrontWindow(EffectWindow* frontWindow, int width, int leftWindows, int rightWindows, bool reflectedWindow)
{
if (frontWindow == nullptr)
return;
bool specialHandlingForward = false;
2011-01-30 14:34:42 +00:00
WindowPaintData data(frontWindow);
if (effects->numScreens() > 1) {
data.setProjectionMatrix(m_projectionMatrix);
data.setModelViewMatrix(m_modelviewMatrix);
}
data.setXTranslation(area.width() * 0.5 - frontWindow->geometry().x() - frontWindow->geometry().width() * 0.5);
2011-01-30 14:34:42 +00:00
if (leftWindows == 0) {
leftWindows = 1;
2011-01-30 14:34:42 +00:00
if (!start && !stop)
specialHandlingForward = true;
2011-01-30 14:34:42 +00:00
}
if (rightWindows == 0) {
rightWindows = 1;
2011-01-30 14:34:42 +00:00
}
if (animation) {
float distance = 0.0;
const QSize screenSize = effects->virtualScreenSize();
if (direction == Right) {
// move to right
2011-01-30 14:34:42 +00:00
distance = -frontWindow->geometry().width() * 0.5f + area.width() * 0.5f +
(((float)screenSize.width() * 0.5 * scaleFactor) - (float)area.width() * 0.5f) / rightWindows;
data.translate(distance * timeLine.value());
data.setRotationAxis(Qt::YAxis);
data.setRotationAngle(-angle * timeLine.value());
data.setRotationOrigin(QVector3D(frontWindow->geometry().width(), 0.0, 0.0));
2011-01-30 14:34:42 +00:00
} else {
// move to left
2011-01-30 14:34:42 +00:00
distance = frontWindow->geometry().width() * 0.5f - area.width() * 0.5f +
((float)width * 0.5f - ((float)screenSize.width() * 0.5 * scaleFactor)) / leftWindows;
float factor = 1.0;
2011-01-30 14:34:42 +00:00
if (specialHandlingForward)
factor = 2.0;
data.translate(distance * timeLine.value() * factor);
data.setRotationAxis(Qt::YAxis);
data.setRotationAngle(angle * timeLine.value());
}
}
if (specialHandlingForward && timeLine.value() < 0.5) {
data.multiplyOpacity(1.0 - timeLine.value() * 2.0);
}
paintWindowCover(frontWindow, reflectedWindow, data);
2011-01-30 14:34:42 +00:00
}
2011-01-30 14:34:42 +00:00
void CoverSwitchEffect::paintWindows(const EffectWindowList& windows, bool left, bool reflectedWindows, EffectWindow* additionalWindow)
{
int width = area.width();
int windowCount = windows.count();
EffectWindow* window;
2011-01-30 14:34:42 +00:00
int rotateFactor = 1;
2011-01-30 14:34:42 +00:00
if (!left) {
rotateFactor = -1;
2011-01-30 14:34:42 +00:00
}
const QSize screenSize = effects->virtualScreenSize();
float xTranslate = -((float)(width) * 0.5f - ((float)screenSize.width() * 0.5 * scaleFactor));
2011-01-30 14:34:42 +00:00
if (!left)
xTranslate = ((float)screenSize.width() * 0.5 * scaleFactor) - (float)width * 0.5f;
// handling for additional window from other side
// has to appear on this side after half of the time
if (animation && timeLine.value() >= 0.5 && additionalWindow != nullptr) {
2011-01-30 14:34:42 +00:00
WindowPaintData data(additionalWindow);
if (effects->numScreens() > 1) {
data.setProjectionMatrix(m_projectionMatrix);
data.setModelViewMatrix(m_modelviewMatrix);
}
data.setRotationAxis(Qt::YAxis);
data.setRotationAngle(angle * rotateFactor);
if (left) {
data.translate(-xTranslate - additionalWindow->geometry().x());
}
2011-01-30 14:34:42 +00:00
else {
data.translate(xTranslate + area.width() -
additionalWindow->geometry().x() - additionalWindow->geometry().width());
data.setRotationOrigin(QVector3D(additionalWindow->geometry().width(), 0.0, 0.0));
}
data.multiplyOpacity((timeLine.value() - 0.5) * 2.0);
2011-01-30 14:34:42 +00:00
paintWindowCover(additionalWindow, reflectedWindows, data);
}
// normal behaviour
2011-01-30 14:34:42 +00:00
for (int i = 0; i < windows.count(); i++) {
window = windows.at(i);
if (window == nullptr || window->isDeleted()) {
continue;
2011-01-30 14:34:42 +00:00
}
WindowPaintData data(window);
if (effects->numScreens() > 1) {
data.setProjectionMatrix(m_projectionMatrix);
data.setModelViewMatrix(m_modelviewMatrix);
}
data.setRotationAxis(Qt::YAxis);
data.setRotationAngle(angle);
2011-01-30 14:34:42 +00:00
if (left)
data.translate(-xTranslate + xTranslate * i / windowCount - window->geometry().x());
else
data.translate(xTranslate + width - xTranslate * i / windowCount - window->geometry().x() - window->geometry().width());
2011-01-30 14:34:42 +00:00
if (animation) {
if (direction == Right) {
if ((i == windowCount - 1) && left) {
// right most window on left side -> move to front
// have to move one window distance plus half the difference between the window and the desktop size
data.translate((xTranslate / windowCount + (width - window->geometry().width()) * 0.5f) * timeLine.value());
data.setRotationAngle(angle - angle * timeLine.value());
2011-01-30 14:34:42 +00:00
}
// right most window does not have to be moved
2011-01-30 14:34:42 +00:00
else if (!left && (i == 0)); // do nothing
else {
// all other windows - move to next position
data.translate(xTranslate / windowCount * timeLine.value());
}
2011-01-30 14:34:42 +00:00
} else {
if ((i == windowCount - 1) && !left) {
// left most window on right side -> move to front
data.translate(- (xTranslate / windowCount + (width - window->geometry().width()) * 0.5f) * timeLine.value());
data.setRotationAngle(angle - angle * timeLine.value());
2011-01-30 14:34:42 +00:00
}
// left most window does not have to be moved
2011-01-30 14:34:42 +00:00
else if (i == 0 && left); // do nothing
else {
// all other windows - move to next position
data.translate(- xTranslate / windowCount * timeLine.value());
}
}
2011-01-30 14:34:42 +00:00
}
if (!left)
data.setRotationOrigin(QVector3D(window->geometry().width(), 0.0, 0.0));
data.setRotationAngle(data.rotationAngle() * rotateFactor);
// make window most to edge transparent if animation
2011-01-30 14:34:42 +00:00
if (animation && i == 0 && ((direction == Left && left) || (direction == Right && !left))) {
// only for the first half of the animation
if (timeLine.value() < 0.5) {
data.multiplyOpacity((1.0 - timeLine.value() * 2.0));
2011-01-30 14:34:42 +00:00
paintWindowCover(window, reflectedWindows, data);
}
2011-01-30 14:34:42 +00:00
} else {
paintWindowCover(window, reflectedWindows, data);
}
}
2011-01-30 14:34:42 +00:00
}
void CoverSwitchEffect::windowInputMouseEvent(QEvent* e)
2011-01-30 14:34:42 +00:00
{
if (e->type() != QEvent::MouseButtonPress)
return;
// we don't want click events during animations
2011-01-30 14:34:42 +00:00
if (animation)
return;
QMouseEvent* event = static_cast< QMouseEvent* >(e);
switch (event->button()) {
case Qt::XButton1: // wheel up
selectPreviousWindow();
break;
case Qt::XButton2: // wheel down
selectNextWindow();
break;
case Qt::LeftButton:
case Qt::RightButton:
case Qt::MiddleButton:
default:
QPoint pos = event->pos();
// determine if a window has been clicked
// not interested in events above a fullscreen window (ignoring panel size)
if (pos.y() < (area.height()*scaleFactor - area.height()) * 0.5f *(1.0f / scaleFactor))
return;
// if there is no selected window (that is no window at all) we cannot click it
if (!selected_window)
return;
if (pos.x() < (area.width()*scaleFactor - selected_window->width()) * 0.5f *(1.0f / scaleFactor)) {
float availableSize = (area.width() * scaleFactor - area.width()) * 0.5f * (1.0f / scaleFactor);
for (int i = 0; i < leftWindows.count(); i++) {
int windowPos = availableSize / leftWindows.count() * i;
if (pos.x() < windowPos)
continue;
if (i + 1 < leftWindows.count()) {
if (pos.x() > availableSize / leftWindows.count()*(i + 1))
continue;
}
2011-01-30 14:34:42 +00:00
effects->setTabBoxWindow(leftWindows[i]);
return;
}
}
if (pos.x() > area.width() - (area.width()*scaleFactor - selected_window->width()) * 0.5f *(1.0f / scaleFactor)) {
float availableSize = (area.width() * scaleFactor - area.width()) * 0.5f * (1.0f / scaleFactor);
for (int i = 0; i < rightWindows.count(); i++) {
int windowPos = area.width() - availableSize / rightWindows.count() * i;
if (pos.x() > windowPos)
continue;
if (i + 1 < rightWindows.count()) {
if (pos.x() < area.width() - availableSize / rightWindows.count()*(i + 1))
continue;
}
2011-01-30 14:34:42 +00:00
effects->setTabBoxWindow(rightWindows[i]);
return;
}
}
break;
}
2011-01-30 14:34:42 +00:00
}
void CoverSwitchEffect::abort()
2011-01-30 14:34:42 +00:00
{
// it's possible that abort is called after tabbox has been closed
// in this case the cleanup is already done (see bug 207554)
2011-01-30 14:34:42 +00:00
if (mActivated) {
effects->unrefTabBox();
effects->stopMouseInterception(this);
2011-01-30 14:34:42 +00:00
}
effects->setActiveFullScreenEffect(nullptr);
timeLine.reset();
Provide expected presentation time to effects Effects are given the interval between two consecutive frames. The main flaw of this approach is that if the Compositor transitions from the idle state to "active" state, i.e. when there is something to repaint, effects may see a very large interval between the last painted frame and the current. In order to address this issue, the Scene invalidates the timer that is used to measure time between consecutive frames before the Compositor is about to become idle. While this works perfectly fine with Xinerama-style rendering, with per screen rendering, determining whether the compositor is about to idle is rather a tedious task mostly because a single output can't be used for the test. Furthermore, since the Compositor schedules pointless repaints just to ensure that it's idle, it might take several attempts to figure out whether the scene timer must be invalidated if you use (true) per screen rendering. Ideally, all effects should use a timeline helper that is aware of the underlying render loop and its timings. However, this option is off the table because it will involve a lot of work to implement it. Alternative and much simpler option is to pass the expected presentation time to effects rather than time between consecutive frames. This means that effects are responsible for determining how much animation timelines have to be advanced. Typically, an effect would have to store the presentation timestamp provided in either prePaint{Screen,Window} and use it in the subsequent prePaint{Screen,Window} call to estimate the amount of time passed between the next and the last frames. Unfortunately, this is an API incompatible change. However, it shouldn't take a lot of work to port third-party binary effects, which don't use the AnimationEffect class, to the new API. On the bright side, we no longer need to be concerned about the Compositor getting idle. We do still try to determine whether the Compositor is about to idle, primarily, because the OpenGL render backend swaps buffers on present, but that will change with the ongoing compositing timing rework.
2020-11-20 15:44:04 +00:00
lastPresentTime = std::chrono::milliseconds::zero();
mActivated = false;
stop = false;
stopRequested = false;
effects->addRepaintFull();
captionFrame->free();
2011-01-30 14:34:42 +00:00
}
void CoverSwitchEffect::slotWindowClosed(EffectWindow* c)
2011-01-30 14:34:42 +00:00
{
if (c == selected_window)
selected_window = nullptr;
// if the list is not empty, the effect is active
2011-01-30 14:34:42 +00:00
if (!currentWindowList.isEmpty()) {
c->refWindow();
2011-01-30 14:34:42 +00:00
referrencedWindows.append(c);
currentWindowList.removeAll(c);
leftWindows.removeAll(c);
rightWindows.removeAll(c);
}
2011-01-30 14:34:42 +00:00
}
bool CoverSwitchEffect::isActive() const
{
return (mActivated || stop || stopRequested) && !effects->isScreenLocked();
}
void CoverSwitchEffect::updateCaption()
{
if (!selected_window || !windowTitle) {
return;
}
if (selected_window->isDesktop()) {
captionFrame->setText(i18nc("Special entry in alt+tab list for minimizing all windows",
"Show Desktop"));
static QPixmap pix = QIcon::fromTheme(QStringLiteral("user-desktop")).pixmap(captionFrame->iconSize());
captionFrame->setIcon(pix);
} else {
captionFrame->setText(selected_window->caption());
captionFrame->setIcon(selected_window->icon());
}
}
void CoverSwitchEffect::slotTabBoxKeyEvent(QKeyEvent *event)
{
if (event->type() == QEvent::KeyPress) {
switch (event->key()) {
case Qt::Key_Left:
selectPreviousWindow();
break;
case Qt::Key_Right:
selectNextWindow();
break;
default:
// nothing
break;
}
}
}
void CoverSwitchEffect::selectNextOrPreviousWindow(bool forward)
{
if (!mActivated || !selected_window) {
return;
}
const int index = effects->currentTabBoxWindowList().indexOf(selected_window);
int newIndex = index;
if (forward) {
++newIndex;
} else {
--newIndex;
}
if (newIndex == effects->currentTabBoxWindowList().size()) {
newIndex = 0;
} else if (newIndex < 0) {
newIndex = effects->currentTabBoxWindowList().size() -1;
}
if (index == newIndex) {
return;
}
effects->setTabBoxWindow(effects->currentTabBoxWindowList().at(newIndex));
}
} // namespace