Effects are given the interval between two consecutive frames. The main
flaw of this approach is that if the Compositor transitions from the idle
state to "active" state, i.e. when there is something to repaint,
effects may see a very large interval between the last painted frame and
the current. In order to address this issue, the Scene invalidates the
timer that is used to measure time between consecutive frames before the
Compositor is about to become idle.
While this works perfectly fine with Xinerama-style rendering, with per
screen rendering, determining whether the compositor is about to idle is
rather a tedious task mostly because a single output can't be used for
the test.
Furthermore, since the Compositor schedules pointless repaints just to
ensure that it's idle, it might take several attempts to figure out
whether the scene timer must be invalidated if you use (true) per screen
rendering.
Ideally, all effects should use a timeline helper that is aware of the
underlying render loop and its timings. However, this option is off the
table because it will involve a lot of work to implement it.
Alternative and much simpler option is to pass the expected presentation
time to effects rather than time between consecutive frames. This means
that effects are responsible for determining how much animation timelines
have to be advanced. Typically, an effect would have to store the
presentation timestamp provided in either prePaint{Screen,Window} and
use it in the subsequent prePaint{Screen,Window} call to estimate the
amount of time passed between the next and the last frames.
Unfortunately, this is an API incompatible change. However, it shouldn't
take a lot of work to port third-party binary effects, which don't use the
AnimationEffect class, to the new API. On the bright side, we no longer
need to be concerned about the Compositor getting idle.
We do still try to determine whether the Compositor is about to idle,
primarily, because the OpenGL render backend swaps buffers on present,
but that will change with the ongoing compositing timing rework.
The main advantage of SPDX license identifiers over the traditional
license headers is that it's more difficult to overlook inappropriate
licenses for kwin, for example GPL 3. We also don't have to copy a
lot of boilerplate text.
In order to create this change, I ran licensedigger -r -c from the
toplevel source directory.
Summary:
Use windowFrameGeometryChanged rather than windowGeometryShapeChanged
because we are interested only in frame geometry changes.
Reviewers: #kwin, davidedmundson
Reviewed By: #kwin, davidedmundson
Subscribers: kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D26909
Summary:
Won't make things go much faster since everything that was
being passed by value is refcounted but still const & is a bit faster
than refcounting
For shared pointers instead of adding const & we move them into the
destination variable saving some cpu usage but at the same time making
clear the pointer is being stored by not being const &
Reviewers: zzag
Reviewed By: zzag
Subscribers: zzag, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D25022
Summary:
This patch fixes some of issues that the Snap Helper effect currently
has:
* If a window is being moved, there are visual artifacts (cause: missing
addRepaint's);
* It uses addRepaintFull;
* For some reason, if a window goes deleted, it will be kept around as
long as the Snap Helper effect needs it (visually, it doesn't look
good).
Among other changes:
* Use variables to store color and width of grid lines;
* Use new connect syntax;
* Port to TimeLine;
* Fix coding style in some places.
Test Plan:
Tried the effect with different rendering backends, no longer see visual
artifacts when moving or resizing windows.
Reviewers: #kwin, romangg
Reviewed By: #kwin, romangg
Subscribers: romangg, abetts, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D15695
Each effect is able to declare itself as currently being active,
that is transforming windows or painting or screen or doing anything
during the current rendered frame.
This change eliminates the hottest path inside KWin identified by
callgrind.
REVIEW: 102449
The KWin::TimeLine class was only a small wrapper around QTimeLine
without adding anything to QTimeLine what is not present in QTimeLine.
The initial idea was to make it possible to provide more curve shapes.
This is now obsoleted by Qt shipping more useful curves with QTimeLine.
So let's clean up a little bit and use QTimeLine directly instead of
the small wrapper.
All effects are adjusted to use QTimeLine directly.
First a signal is emitted when the user starts a move/resize operation.
During the move/resize operation each geometry change emits an update signal.
Last but not least a finish signal is emitted.
This eliminates the specific method for geometry updates in drawbound resize
mode.
Client and Unmanaged use a signal to notify that they are about to be closed.
The EffectsHandlerImpl is connected to those signals and emits the appropriate
windowClosed signal to which the effects are connected.
perfectionist people that want to move a window to the exact center of
the screen but can never get close enough to it for the automatic
snapping to trigger. OpenGL-only for now, gave up on XRender, if anyone
can get it to work go for it.
svn path=/trunk/KDE/kdebase/workspace/; revision=926393