The GlStrictBinding flag indicates whether it's okay not to re-bind the X11
pixmap to the OpenGL surface texture if the corresponding window is damaged.
It doesn't really affect the SceneOpenGL, only low level backend stuff.
This ensures that the window will have correct geometry if a maximized
window changes preferred decoration mode. X11Client does something
similar, see X11Client::updateShape().
In hindsight, perhaps, AbstractClient::{create,destroy}Decoration() must
preserve the old frame geometry, but it's not clear how to do that
because it requires decoration updates to be truly async, otherwise
there will be ugly flickering.
Currently, the scene owns the renderer, which puts more
responsibilities on the scene other than painting windows and it also
puts some limitations on what we can do, for example, there can be only
one scene, etc.
This change decouples the scene and the renderer so the scene is more
swappable.
Scenes are no longer implemented as plugins because opengl backend
and scene creation needs to be wrapped in opengl safety points. We
could still create the render backend and then go through the list
of scene plugins, but accessing concrete scene implementation is
much much simpler. Besides that, having scenes implemented as plugins
is not worthwhile because there are only two scenes and each contributes
very small amount of binary size. On the other hand, we still need to
take into account how many times kwin accesses the hard drive to load
plugins in order to function as expected.
This allows using base opengl backends in libkwin, which can be useful
later on for the purpose of moving the ownership of render backends from
the Scene class to the Compositor class.
It has been disabled with Mesa for almost half a decade due to false
positives and even if it weren't disabled, it contributes to the startup
time.
The commit message that added the self test doesn't explain why it was
added, but if it was added to detect unstable drivers, it's not worth it.
With an opaque fullscreen window we can be sure that items under it don't
actually require us to repaint. This should yield some small efficiency
improvements and resolves stutter with adaptive sync.
BUG: 443872
FIXED-IN: 5.23.3
Windows in workspace.clientList() are sorted in the map order. This
means that the minimize all script will try to activate the last mapped
window when unminimizing windows, which is a bit annoying.
This change ensures that the minimize all script doesn't activate wrong
window by minimizing and unminimizing windows in the stacking order.
It's not a bullet-proof solution though, but it should produce good
enough results.
This improves file organization in kwin by putting backends in a single
directory.
It also makes easier to discover kwin's low level components for new
contributors because the plugins directory may come as the last place to
look for. When one hears "plugin", the first thing that comes to mind is
regular plugins, not low level backends.
This ports the nested wayland platform plugin to the InputDevice
abstractions.
Some global handling logic has been simplified to make porting more
straightforward.
The main motivation behind this change is to prepare input abstractions
for virtual input devices so the wl_seat can properly advertise caps or
the cursor getting properly mapped/unmapped when a fake pointer is
added/removed on a system without a hardware mouse connected.
With this, there are three abstractions - InputDevice, InputBackend, and
InputRedirection.
An InputDevice represents an input device such as a mouse, a keyboard, a
tablet, etc. The InputBackend class notifies the InputRedirection about
(dis-)connected devices. The InputRedirection manages the input devices.
Such design allows to unify the event flow for real and virtual input
devices.
There can be several input backends active. For example, the libinput
backend and an input backend that provides virtual input devices, e.g.
libeis or org_kde_kwin_fake_input.
If an output is disconnected, the Workspace will update the
Toplevel.output property for all windows that are on that output, then
it will call AbstractClient::checkWorkspacePosition() to fix window
position.
That may result in some windows partially sticking outside visible area
because AbstractClient::checkWorkspacePosition() has no idea what output
the window was.
This change addresses that problem by delaying updating the
Toplevel.output property so AbstractClient::checkWorkspacePosition()
could pick better window placement.
The role of enabledByDefaultMethod was misinterpreted. It exists only
for kcms so they can display undetermined state. EnabledByDefault should
still be set to a valid value.