If the deco part doesn't exist or the target rect is empty, KWin should
not try to composite the deco part on the screen. It can be an empty
rect for maximized windows. If the render composite is tried it results
in an error (note - man page says "This request does never generate any
errors.").
To simplify the macro is turned into a lambda.
The root cause for this problem is that PaintRedirector creates an
XRenderPicture for those invalid geometries and this requests arleady
fails. Thus RasterXRenderPaintRedirector is adjusted to not create the
XRenderPicture in that case and set it to nullptr. For a null
XRenderPicture XCB_RENDER_PICTURE_NONE is returned.
BUG: 332247
REVIEW: 117373
Returns true if the OperationMode requires KWin to composite to a
Wayland surface. This replaces the checks for the WaylandBackend or env
variable used so far in the construction of the Scene.
This backend uses an XShm pixmap for the rendering back buffer. In
present() the content of this shm pixmap is copied into a Wayland shm
buffer freeing the pixmap to be used for the next frame again and by that
we have a double buffered rendering.
In opposite to the X11 XRender backend this backend doesn't use the
overlay window.
Only the X based Scenes need an overlay window, so the Compositor doesn't
need to check for it in the Wayland case.
OverlayWindow is moved from OpenGLBackend to the sub classes which need
to provide it.
The egl wayland backend registers for the callback for a rendered frame.
This allows to throttle KWin's compositor so that we don't render frames
which wouldn't end up on the screen.
For this the Scene provides a method to query whether the last frame got
rendered. By default this returns true in all backends. The Egl Wayland
backend returns true or false depending on whether the callback for the
last frame was recieved.
In case the last frame has not been renderd when performCompositing is
tried to be called, the method returns just like in the case when the
overlay window is not visible. Once the frame callback has been recieved
performCompositing is invoked again.
An abstract backend is split out of SceneXRender which takes care of
managing the render pictures and swapping them after a frame is rendered.
Having this abstract allows to implement further backends for XRender
which do not use the Overlay Window for compositing.
To have it consistant the SceneXRender is now also created by a factory
method.
The pure virtual methods windowAdded, windowClosed, windowDeleted and
windowGeometryShapeChanged had identical implementations in both XRender
and OpenGL scene. They were accessing the hash with Scene::Windows which
is nowhere else used except for creating the stacking order in ::paint.
The implementations are moved to the base class, the only Scene specific
code is a pure virtual factory method to create the Scene window. This
already existed in SceneOpenGL to create either a SceneOpenGL1 or 2
window.
Also the hash of windows is a Scene private member now and the creation
of the stacking order is provided by a method, so that the Scene sub
classes do no longer need to access the stacking order at all.
REVIEW: 111207
Instead of having the Shadow factory method check the compositor type and
do the decision which Shadow sub class to create, a pure virtual method in
Scene is called which returns the specific Shadow sub class instance.
Instead of having the EffectFrameImpl check the compositor type and do
the decision which Scene::EffectFrame to create, a pure virtual method
in Scene is called which returns the specific Scene::EffectFrame.
Client used to have dedicated methods for different icon sizes instead
of combining all pixmaps into one QIcon. This resulted in various parts
of KWin having different access to the icons:
* effects only got one pixmap of size 32x32
* decorations only got the 16x16 and 32x32 pixmaps combined into a QIcon
* tabbox could request all icon sizes, but only as pixmap
Now all sizes are available in one QIcon allowing to easily access the
best fitting icon in a given UI.
The behavior for creating a pixmap for a window is moved from Toplevel
into a dedicated class WindowPixmap. Scene::Window holds a reference to
this class and creates a new WindowPixmap whenever the pixmap needs to be
discarded. In addition it also keeps the old WindowPixmap around for the
case that creating the new pixmap fails. The compositor can in that case
use the previous pixmap which reduces possible flickering. Also this
referencing can be used to improve transition effects like the maximize
windows effect which would benefit from starting with the old pixmap.
For XRender and OpenGL a dedicated sub-class of the WindowPixmap is
created which provides the additional mapping to an XRender picture and
OpenGL texture respectively.
BUG: 319563
FIXED-IN: 4.11
REVIEW: 110577
We always reset with the complete window geometry, so the subtracting
doesn't make any sense. We can just always set the damage to an empty
region.
REVIEW: 110438
PaintRedirector is turned into an abstract class providing a factory
method which returns either an instance of
* OpenGLPaintRedirector
* NativeXRenderPaintRedirector
* RasterXRenderPaintRedirector
OpenGLPaintRedirector is basically doing exactly the same as the parent
class used to do before. Though the idea is to extend the functionality
to have the PaintRedirector write directly into OpenGL textures to limit
copying the complete decorations.
NativeXRenderPaintRedirector is similar to OpenGLPaintRedirector by
rendering into a QPixmap and providing the pictureHandle for the QPixmap
to SceneXRender.
RasterXRenderPaintRedirector is providing the functionality for the case
that the QPixmap/XPixmap relationship is not present. From the QPixmap
containing the pending decoration paint a QImage is created and then the
relevent parts are copied directly into the decoration pixmap.
REVIEW: 109074
Instead of having a pointer to a QPixmap the offscreen target holds an
xcb_render_picture_t. To make this possible in SceneWindow the tempPixmap
is changed from a QPixmap* to a XRenderPicture*. QPixmap was only used
for convenience.
ScreenShot Effect as only user of the offscreen target is adjusted but
as it needs a QImage, still uses a QPixmap wrapper.
This follows how it is done for OpenGL where the renderRoundBox() got
dropped some time ago.
New implementation implements the box with round corners using xrender
directly instead of using a QPainter on a QPixmap.
The extension handling is removed from kwinglobals and moved into the
xcbutils in KWin core in namespace KWin::Xcb. The motivation for this
change is that the Extensions are only used in KWin core and are marked
as internal. So there is no need to have them in the library.
What remains in Extensions are the non-native pixmaps. This will be
removed once we are on Qt 5 as QPixmap can no longer reference an XPixmap.
The remaining code in kwinglobals also still initialize the XLib versions
of extensions emitting events. It seems like there are no XEvents emitted
if not done so even if the extension is correctly initialized with xcb.
This needs to be removed once the event handling is ported over to xcb.
REVIEW: 107832
If a section of comments consists of a list of links and all are broken
it's a sign that nobody has used these comments for a long time...
REVIEW: 107933
The only task of the PaintRedirector is to redirect the painting of the
window decorations into Pixmaps. So it should actually do this by also
handling the four pixmaps for the decoration. This simplifies the code
as all the logic concerning redirecting the painting is now grouped
together.
Furthermore the PaintRedirector is now a child of the decoration widget,
which means it gets automatically destroyed whenever the decoration is
destroyed - the Client does not have to care about it.
Also the PaintRedirector gets only created if the Compositor is active as
it is not needed in the non-compositing case.
REVIEW: 106620
The handling for creating and managing the OpenGL context is
split out of the SceneOpenGL into the abstract OpenGLBackend
and it's two subclasses GlxBackend and EglOnXBackend.
The backends take care of creating the OpenGL context on the
windowing system, e.g. on glx an OpenGL context on the overlay
window is created and in the egl case an EGL context is created.
This means that the SceneOpenGL itself does not have to care
about the specific underlying infrastructure.
Furthermore the backend provides the Textures for the specific
texture from pixmap operations. For that in each of the backend
files an additional subclass of the TexturePrivate is defined.
These subclasses hold the EglImage and GLXPixmap respectively.
The backend is able to create such a private texture and for
that the ctor of the Texture is changed to take the backend as
a parameter and the Scene provides a factory method for
creating Textures. To make this work inside Window the Textures
are now hold as pointers which seems a better choice anyway as
to the member functions pointers are passed.
The public member variables for opacity, saturation and brightness
are removed in favor for getter and setters. The variables are
moved into a private class. Those are now qreal instead of double.
To make usage inside the effects easier a multiply method is added
which multiplies the current value with passed in factor and returns
the new value in a functional programming style.
This commit is the top-most of a patch series to refactor
ScreenPaintData and WindowPaintData. Other related commits are:
* 0811772
* ebdc7ec
* 2c8dd8d
* 7699726
* 68e0201
* 611cb09
REVIEW: 105141
BUG: 303314
FIXED-IN: 4.10