kwin/scene_opengl.cpp

1404 lines
50 KiB
C++
Raw Normal View History

/*****************************************************************
KWin - the KDE window manager
This file is part of the KDE project.
Copyright (C) 2006 Lubos Lunak <l.lunak@kde.org>
You can Freely distribute this program under the GNU General Public
License. See the file "COPYING" for the exact licensing terms.
Based on glcompmgr code by Felix Bellaby.
Using code from Compiz and Beryl.
******************************************************************/
/*
This is the OpenGL-based compositing code. It is the primary and most powerful
compositing backend.
Sources and other compositing managers:
=======================================
- http://opengl.org
- documentation
- OpenGL Redbook (http://opengl.org/documentation/red_book/ - note it's only version 1.1)
- GLX docs (http://opengl.org/documentation/specs/glx/glx1.4.pdf)
- extensions docs (http://www.opengl.org/registry/)
- glcompmgr
- http://lists.freedesktop.org/archives/xorg/2006-July/017006.html ,
- http://www.mail-archive.com/compiz%40lists.freedesktop.org/msg00023.html
- simple and easy to understand
- works even without texture_from_pixmap extension
- claims to support several different gfx cards
- compile with something like
"gcc -Wall glcompmgr-0.5.c `pkg-config --cflags --libs glib-2.0` -lGL -lXcomposite -lXdamage -L/usr/X11R6/lib"
- compiz
- git clone git://anongit.freedesktop.org/git/xorg/app/compiz
- the ultimate <whatever>
- glxcompmgr
- git clone git://anongit.freedesktop.org/git/xorg/app/glxcompgr
- a rather old version of compiz, but also simpler and as such simpler
to understand
- beryl
- a fork of Compiz
- http://beryl-project.org
- git clone git://anongit.beryl-project.org/beryl/beryl-core (or beryl-plugins etc. ,
the full list should be at git://anongit.beryl-project.org/beryl/)
- libcm (metacity)
- cvs -d :pserver:anonymous@anoncvs.gnome.org:/cvs/gnome co libcm
- not much idea about it, the model differs a lot from KWin/Compiz/Beryl
- does not seem to be very powerful or with that much development going on
*/
#include "scene_opengl.h"
#include <kxerrorhandler.h>
#include "utils.h"
#include "client.h"
#include "deleted.h"
#include "effects.h"
#include <sys/ipc.h>
#include <sys/shm.h>
#include <math.h>
#ifdef HAVE_OPENGL
namespace KWin
{
//****************************************
// SceneOpenGL
//****************************************
// the configs used for the destination
GLXFBConfig SceneOpenGL::fbcbuffer_db;
GLXFBConfig SceneOpenGL::fbcbuffer_nondb;
// the configs used for windows
SceneOpenGL::FBConfigInfo SceneOpenGL::fbcdrawableinfo[ 32 + 1 ];
// GLX content
GLXContext SceneOpenGL::ctxbuffer;
GLXContext SceneOpenGL::ctxdrawable;
// the destination drawable where the compositing is done
GLXDrawable SceneOpenGL::glxbuffer;
GLXDrawable SceneOpenGL::last_pixmap;
bool SceneOpenGL::tfp_mode; // using glXBindTexImageEXT (texture_from_pixmap)
bool SceneOpenGL::strict_binding; // intended for AIGLX
bool SceneOpenGL::db; // destination drawable is double-buffered
bool SceneOpenGL::copy_buffer_hack; // workaround for nvidia < 1.0-9xxx drivers
bool SceneOpenGL::shm_mode;
#ifdef HAVE_XSHM
XShmSegmentInfo SceneOpenGL::shm;
#endif
SceneOpenGL::SceneOpenGL( Workspace* ws )
: Scene( ws )
{
// TODO add checks where needed
int dummy;
if( !glXQueryExtension( display(), &dummy, &dummy ))
return;
initGLX();
// check for FBConfig support
if( !hasGLXVersion( 1, 3 ) && !hasGLExtension( "GLX_SGIX_fbconfig" ))
return;
strict_binding = false; // not needed now
selectMode();
initBuffer(); // create destination buffer
initRenderingContext();
// Initialize OpenGL
initGL();
if( db )
glDrawBuffer( GL_BACK );
// Check whether certain features are supported
has_waitSync = glXGetVideoSync ? true : false;
if( !initDrawableConfigs())
assert( false );
int vis_buffer, vis_drawable;
glXGetFBConfigAttrib( display(), fbcbuffer, GLX_VISUAL_ID, &vis_buffer );
kDebug( 1212 ) << "Buffer visual (depth " << QX11Info::appDepth() << "): 0x" << QString::number( vis_buffer, 16 ) << endl;
for( int i = 0; i <= 32; i++ )
{
if( fbcdrawableinfo[ i ].fbconfig == NULL )
continue;
glXGetFBConfigAttrib( display(), fbcdrawableinfo[ i ].fbconfig, GLX_VISUAL_ID, &vis_drawable );
kDebug( 1212 ) << "Drawable visual (depth " << i << "): 0x" << QString::number( vis_drawable, 16 ) << endl;
}
// OpenGL scene setup
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
// swap top and bottom to have OpenGL coordinate system match X system
glOrtho( 0, displayWidth(), displayHeight(), 0, 0, 65535 );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
checkGLError( "Init" );
kDebug( 1212 ) << "DB:" << db << ", TFP:" << tfp_mode << ", SHM:" << shm_mode
<< ", Direct:" << bool( glXIsDirect( display(), ctxbuffer )) << endl;
}
SceneOpenGL::~SceneOpenGL()
{
foreach( Window* w, windows )
delete w;
// do cleanup after initBuffer()
if( wspace->overlayWindow())
{
if( hasGLXVersion( 1, 3 ))
glXDestroyWindow( display(), glxbuffer );
XDestroyWindow( display(), buffer );
wspace->destroyOverlay();
}
else
{
glXDestroyPixmap( display(), glxbuffer );
XFreeGC( display(), gcroot );
XFreePixmap( display(), buffer );
}
if( shm_mode )
cleanupShm();
if( !tfp_mode && !shm_mode )
{
if( last_pixmap != None )
glXDestroyPixmap( display(), last_pixmap );
glXDestroyContext( display(), ctxdrawable );
}
glXDestroyContext( display(), ctxbuffer );
checkGLError( "Cleanup" );
}
void SceneOpenGL::selectMode()
{
// select mode - try TFP first, then SHM, otherwise fallback mode
shm_mode = false;
tfp_mode = false;
if( options->glMode == Options::GLTFP )
{
if( initTfp())
tfp_mode = true;
else if( initShm())
shm_mode = true;
}
else if( options->glMode == Options::GLSHM )
{
if( initShm())
shm_mode = true;
else if( initTfp())
tfp_mode = true;
}
if( !initDrawableConfigs())
assert( false );
// use copy buffer hack from glcompmgr (called COPY_BUFFER there) - nvidia drivers older than
// 1.0-9xxx don't update pixmaps properly, so do a copy first
copy_buffer_hack = !tfp_mode && !shm_mode; // TODO detect that it's nvidia < 1.0-9xxx driver
}
bool SceneOpenGL::initTfp()
{
if( glXBindTexImageEXT == NULL || glXReleaseTexImageEXT == NULL )
return false;
if( !initDrawableConfigs())
return false;
return true;
}
bool SceneOpenGL::initShm()
{
#ifdef HAVE_XSHM
int major, minor;
Bool pixmaps;
if( !XShmQueryVersion( display(), &major, &minor, &pixmaps ) || !pixmaps )
return false;
if( XShmPixmapFormat( display()) != ZPixmap )
return false;
const int MAXSIZE = 4096 * 2048 * 4; // TODO check there are not larger windows
// TODO check that bytes_per_line doesn't involve padding?
shm.readOnly = False;
shm.shmid = shmget( IPC_PRIVATE, MAXSIZE, IPC_CREAT | 0600 );
if( shm.shmid < 0 )
return false;
shm.shmaddr = ( char* ) shmat( shm.shmid, NULL, 0 );
if( shm.shmaddr == ( void * ) -1 )
{
shmctl( shm.shmid, IPC_RMID, 0 );
return false;
}
#ifdef __linux__
// mark as deleted to automatically free the memory in case
// of a crash (but this doesn't work e.g. on Solaris ... oh well)
shmctl( shm.shmid, IPC_RMID, 0 );
#endif
KXErrorHandler errs;
XShmAttach( display(), &shm );
if( errs.error( true ))
{
#ifndef __linux__
shmctl( shm.shmid, IPC_RMID, 0 );
#endif
shmdt( shm.shmaddr );
return false;
}
return true;
#else
return false;
#endif
}
void SceneOpenGL::cleanupShm()
{
#ifdef HAVE_XSHM
shmdt( shm.shmaddr );
#ifndef __linux__
shmctl( shm.shmid, IPC_RMID, 0 );
#endif
#endif
}
void SceneOpenGL::initRenderingContext()
{
bool direct_rendering = options->glDirect;
if( !tfp_mode && !shm_mode )
direct_rendering = false; // fallback doesn't seem to work with direct rendering
KXErrorHandler errs;
ctxbuffer = glXCreateNewContext( display(), fbcbuffer, GLX_RGBA_TYPE, NULL,
direct_rendering ? GL_TRUE : GL_FALSE );
if( ctxbuffer == NULL || !glXMakeContextCurrent( display(), glxbuffer, glxbuffer, ctxbuffer )
|| errs.error( true ))
{ // failed
if( !direct_rendering )
assert( false );
glXDestroyContext( display(), ctxbuffer );
direct_rendering = false; // try again
ctxbuffer = glXCreateNewContext( display(), fbcbuffer, GLX_RGBA_TYPE, NULL, GL_FALSE );
if( ctxbuffer == NULL || !glXMakeContextCurrent( display(), glxbuffer, glxbuffer, ctxbuffer ))
assert( false );
}
if( !tfp_mode && !shm_mode )
{
ctxdrawable = glXCreateNewContext( display(), fbcdrawableinfo[ QX11Info::appDepth() ].fbconfig, GLX_RGBA_TYPE, ctxbuffer,
direct_rendering ? GL_TRUE : GL_FALSE );
}
}
// create destination buffer
void SceneOpenGL::initBuffer()
{
initBufferConfigs();
if( fbcbuffer_db != NULL && wspace->createOverlay())
{ // we have overlay, try to create double-buffered window in it
fbcbuffer = fbcbuffer_db;
XVisualInfo* visual = glXGetVisualFromFBConfig( display(), fbcbuffer );
XSetWindowAttributes attrs;
attrs.colormap = XCreateColormap( display(), rootWindow(), visual->visual, AllocNone );
buffer = XCreateWindow( display(), wspace->overlayWindow(), 0, 0, displayWidth(), displayHeight(),
0, QX11Info::appDepth(), InputOutput, visual->visual, CWColormap, &attrs );
if( hasGLXVersion( 1, 3 ))
glxbuffer = glXCreateWindow( display(), fbcbuffer, buffer, NULL );
else
glxbuffer = buffer;
wspace->setupOverlay( buffer );
db = true;
XFree( visual );
}
else if( fbcbuffer_nondb != NULL )
{ // cannot get any double-buffered drawable, will double-buffer using a pixmap
fbcbuffer = fbcbuffer_nondb;
db = false;
XGCValues gcattr;
gcattr.subwindow_mode = IncludeInferiors;
gcroot = XCreateGC( display(), rootWindow(), GCSubwindowMode, &gcattr );
buffer = XCreatePixmap( display(), rootWindow(), displayWidth(), displayHeight(),
QX11Info::appDepth());
glxbuffer = glXCreatePixmap( display(), fbcbuffer, buffer, NULL );
}
else
assert( false );
}
// choose the best configs for the destination buffer
bool SceneOpenGL::initBufferConfigs()
{
int cnt;
GLXFBConfig *fbconfigs = glXGetFBConfigs( display(), DefaultScreen( display() ), &cnt );
fbcbuffer_db = NULL;
fbcbuffer_nondb = NULL;
for( int i = 0; i < 2; i++ )
{
int back, stencil, depth, caveat, alpha;
if( i > 0 )
back = INT_MAX;
else
back = 1;
stencil = 0;
depth = 0;
caveat = INT_MAX;
alpha = 0;
for( int j = 0; j < cnt; j++ )
{
XVisualInfo *vi;
int visual_depth;
vi = glXGetVisualFromFBConfig( display(), fbconfigs[ j ] );
if( vi == NULL )
continue;
visual_depth = vi->depth;
XFree( vi );
if( visual_depth != QX11Info::appDepth() )
continue;
int value;
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_ALPHA_SIZE, &alpha );
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_BUFFER_SIZE, &value );
if( value != QX11Info::appDepth() && ( value - alpha ) != QX11Info::appDepth() )
continue;
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_DOUBLEBUFFER, &value );
if( i > 0 )
{
if( value > back )
continue;
}
else
{
if( value < back )
continue;
}
back = value;
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_STENCIL_SIZE, &value );
if( value < stencil )
continue;
stencil = value;
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_DEPTH_SIZE, &value );
if( value < depth )
continue;
depth = value;
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_CONFIG_CAVEAT, &value );
if( value > caveat )
continue;
caveat = value;
if( i > 0 )
fbcbuffer_nondb = fbconfigs[ j ];
else
fbcbuffer_db = fbconfigs[ j ];
}
}
if( cnt )
XFree( fbconfigs );
if( fbcbuffer_db == NULL && fbcbuffer_nondb == NULL )
{
kDebug( 1212 ) << "Couldn't find framebuffer configuration for buffer!" << endl;
return false;
}
return true;
}
// make a list of the best configs for windows by depth
bool SceneOpenGL::initDrawableConfigs()
{
int cnt;
GLXFBConfig *fbconfigs = glXGetFBConfigs( display(), DefaultScreen( display() ), &cnt );
for( int i = 0; i <= 32; i++ )
{
int back, stencil, depth, caveat, alpha, mipmap, rgba;
back = INT_MAX;
stencil = INT_MAX;
depth = INT_MAX;
caveat = INT_MAX;
mipmap = 0;
rgba = 0;
fbcdrawableinfo[ i ].fbconfig = NULL;
fbcdrawableinfo[ i ].bind_texture_format = 0;
fbcdrawableinfo[ i ].y_inverted = 0;
fbcdrawableinfo[ i ].mipmap = 0;
for( int j = 0; j < cnt; j++ )
{
XVisualInfo *vi;
int visual_depth;
vi = glXGetVisualFromFBConfig( display(), fbconfigs[ j ] );
if( vi == NULL )
continue;
visual_depth = vi->depth;
XFree( vi );
if( visual_depth != i )
continue;
int value;
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_ALPHA_SIZE, &alpha );
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_BUFFER_SIZE, &value );
if( value != i && ( value - alpha ) != i )
continue;
if( tfp_mode )
{
value = 0;
if( i == 32 )
{
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_BIND_TO_TEXTURE_RGBA_EXT, &value );
if( value )
{
rgba = 1;
fbcdrawableinfo[ i ].bind_texture_format = GLX_TEXTURE_FORMAT_RGBA_EXT;
}
}
if( !value )
{
if( rgba )
continue;
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_BIND_TO_TEXTURE_RGB_EXT, &value );
if( !value )
continue;
fbcdrawableinfo[ i ].bind_texture_format = GLX_TEXTURE_FORMAT_RGB_EXT;
}
}
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_DOUBLEBUFFER, &value );
if( value > back )
continue;
back = value;
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_STENCIL_SIZE, &value );
if( value > stencil )
continue;
stencil = value;
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_DEPTH_SIZE, &value );
if( value > depth )
continue;
depth = value;
if( tfp_mode && GLTexture::framebufferObjectSupported())
{
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_BIND_TO_MIPMAP_TEXTURE_EXT, &value );
if( value < mipmap )
continue;
mipmap = value;
}
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_CONFIG_CAVEAT, &value );
if( value > caveat )
continue;
caveat = value;
glXGetFBConfigAttrib( display(), fbconfigs[ j ],
GLX_Y_INVERTED_EXT, &value );
fbcdrawableinfo[ i ].fbconfig = fbconfigs[ j ];
fbcdrawableinfo[ i ].y_inverted = value;
fbcdrawableinfo[ i ].mipmap = mipmap;
}
}
if( cnt )
XFree( fbconfigs );
if( fbcdrawableinfo[ QX11Info::appDepth() ].fbconfig == NULL )
{
kDebug( 1212 ) << "Couldn't find framebuffer configuration for default depth!" << endl;
return false;
}
return true;
}
// the entry function for painting
void SceneOpenGL::paint( QRegion damage, ToplevelList toplevels )
{
foreach( Toplevel* c, toplevels )
{
assert( windows.contains( c ));
stacking_order.append( windows[ c ] );
}
grabXServer();
glXWaitX();
glPushMatrix();
int mask = 0;
paintScreen( &mask, &damage ); // call generic implementation
glPopMatrix();
ungrabXServer(); // ungrab before flushBuffer(), it may wait for vsync
flushBuffer( mask, damage );
// do cleanup
stacking_order.clear();
checkGLError( "PostPaint" );
}
// wait for vblank signal before painting
void SceneOpenGL::waitSync()
{ // NOTE that vsync has no effect with indirect rendering
if( waitSyncAvailable() && options->glVSync )
{
unsigned int sync;
glFlush();
glXGetVideoSync( &sync );
glXWaitVideoSync( 2, ( sync + 1 ) % 2, &sync );
}
}
// actually paint to the screen (double-buffer swap or copy from pixmap buffer)
void SceneOpenGL::flushBuffer( int mask, QRegion damage )
{
if( db )
{
if( mask & PAINT_SCREEN_REGION )
{
waitSync();
if( glXCopySubBuffer )
{
foreach( QRect r, damage.rects())
{
// convert to OpenGL coordinates
int y = displayHeight() - r.y() - r.height();
glXCopySubBuffer( display(), glxbuffer, r.x(), y, r.width(), r.height());
}
}
else
{ // no idea why glScissor() is used, but Compiz has it and it doesn't seem to hurt
glEnable( GL_SCISSOR_TEST );
glDrawBuffer( GL_FRONT );
int xpos = 0;
int ypos = 0;
foreach( QRect r, damage.rects())
{
// convert to OpenGL coordinates
int y = displayHeight() - r.y() - r.height();
// Move raster position relatively using glBitmap() rather
// than using glRasterPos2f() - the latter causes drawing
// artefacts at the bottom screen edge with some gfx cards
// glRasterPos2f( r.x(), r.y() + r.height());
glBitmap( 0, 0, 0, 0, r.x() - xpos, y - ypos, NULL );
xpos = r.x();
ypos = y;
glScissor( r.x(), y, r.width(), r.height());
glCopyPixels( r.x(), y, r.width(), r.height(), GL_COLOR );
}
glBitmap( 0, 0, 0, 0, -xpos, -ypos, NULL ); // move position back to 0,0
glDrawBuffer( GL_BACK );
glDisable( GL_SCISSOR_TEST );
}
}
else
{
waitSync();
glXSwapBuffers( display(), glxbuffer );
}
glXWaitGL();
XFlush( display());
}
else
{
glFlush();
glXWaitGL();
waitSync();
if( mask & PAINT_SCREEN_REGION )
foreach( QRect r, damage.rects())
XCopyArea( display(), buffer, rootWindow(), gcroot, r.x(), r.y(), r.width(), r.height(), r.x(), r.y());
else
XCopyArea( display(), buffer, rootWindow(), gcroot, 0, 0, displayWidth(), displayHeight(), 0, 0 );
XFlush( display());
}
}
void SceneOpenGL::paintGenericScreen( int mask, ScreenPaintData data )
{
if( mask & PAINT_SCREEN_TRANSFORMED )
{ // apply screen transformations
glPushMatrix();
glTranslatef( data.xTranslate, data.yTranslate, 0 );
glScalef( data.xScale, data.yScale, 1 );
}
Scene::paintGenericScreen( mask, data );
if( mask & PAINT_SCREEN_TRANSFORMED )
glPopMatrix();
}
void SceneOpenGL::paintBackground( QRegion region )
{
if( region == infiniteRegion())
{
glClearColor( 1, 1, 1, 1 ); // white
glClear( GL_COLOR_BUFFER_BIT );
}
else
{
glColor4f( 1, 1, 1, 1 ); // white
glBegin( GL_QUADS );
foreach( QRect r, region.rects())
{
glVertex2i( r.x(), r.y());
glVertex2i( r.x() + r.width(), r.y());
glVertex2i( r.x() + r.width(), r.y() + r.height());
glVertex2i( r.x(), r.y() + r.height());
}
glEnd();
}
}
void SceneOpenGL::windowAdded( Toplevel* c )
{
assert( !windows.contains( c ));
windows[ c ] = new Window( c );
}
void SceneOpenGL::windowClosed( Toplevel* c, Deleted* deleted )
{
assert( windows.contains( c ));
if( deleted != NULL )
{ // replace c with deleted
Window* w = windows.take( c );
w->updateToplevel( deleted );
windows[ deleted ] = w;
}
else
{
delete windows.take( c );
}
}
void SceneOpenGL::windowDeleted( Deleted* c )
{
assert( windows.contains( c ));
delete windows.take( c );
}
void SceneOpenGL::windowGeometryShapeChanged( Toplevel* c )
{
if( !windows.contains( c )) // this is ok, shape is not valid
return; // by default
Window* w = windows[ c ];
w->discardShape();
w->discardTexture();
w->discardVertices();
}
void SceneOpenGL::windowOpacityChanged( Toplevel* )
{
#if 0 // not really needed, windows are painted on every repaint
// and opacity is used when applying texture, not when
// creating it
if( !windows.contains( c )) // this is ok, texture is created
return; // on demand
Window* w = windows[ c ];
w->discardTexture();
#endif
}
//****************************************
// SceneOpenGL::Texture
//****************************************
SceneOpenGL::Texture::Texture()
{
init();
}
SceneOpenGL::Texture::Texture( const Pixmap& pix, const QSize& size, int depth )
{
init();
load( pix, size, depth );
}
SceneOpenGL::Texture::~Texture()
{
}
void SceneOpenGL::Texture::init()
{
bound_glxpixmap = None;
}
void SceneOpenGL::Texture::discard()
{
if( mTexture != None )
{
if( tfp_mode )
{
if( !strict_binding )
glXReleaseTexImageEXT( display(), bound_glxpixmap, GLX_FRONT_LEFT_EXT );
glXDestroyGLXPixmap( display(), bound_glxpixmap );
bound_glxpixmap = None;
}
}
GLTexture::discard();
}
void SceneOpenGL::Texture::findTarget()
{
unsigned int new_target = 0;
if( tfp_mode && glXQueryDrawable && bound_glxpixmap != None )
glXQueryDrawable( display(), bound_glxpixmap, GLX_TEXTURE_TARGET_EXT, &new_target );
else
{
if( NPOTTextureSupported() ||
( isPowerOfTwo( mSize.width()) && isPowerOfTwo( mSize.height())))
new_target = GLX_TEXTURE_2D_EXT;
else
new_target = GLX_TEXTURE_RECTANGLE_EXT;
}
switch( new_target )
{
case GLX_TEXTURE_2D_EXT:
mTarget = GL_TEXTURE_2D;
mScale.setWidth( 1.0f / mSize.width());
mScale.setHeight( 1.0f / mSize.height());
break;
case GLX_TEXTURE_RECTANGLE_EXT:
mTarget = GL_TEXTURE_RECTANGLE_ARB;
mScale.setWidth( 1.0f );
mScale.setHeight( 1.0f );
break;
default:
assert( false );
}
}
QRegion SceneOpenGL::Texture::optimizeBindDamage( const QRegion& reg, int limit )
{
if( reg.rects().count() <= 1 )
return reg;
// try to reduce the number of rects, as especially with SHM mode every rect
// causes X roundtrip, even for very small areas - so, when the size difference
// between all the areas and the bounding rectangle is small, simply use
// only the bounding rectangle
int size = 0;
foreach( QRect r, reg.rects())
size += r.width() * r.height();
if( reg.boundingRect().width() * reg.boundingRect().height() - size < limit )
return reg.boundingRect();
return reg;
}
bool SceneOpenGL::Texture::load( const Pixmap& pix, const QSize& size,
int depth, QRegion region )
{
if( pix == None || size.isEmpty() || depth < 1 )
return false;
if( tfp_mode )
{
if( fbcdrawableinfo[ depth ].fbconfig == NULL )
{
kDebug( 1212 ) << "No framebuffer configuration for depth " << depth
<< "; not binding pixmap" << endl;
return false;
}
}
mSize = size;
if( mTexture == None || !region.isEmpty())
{ // new texture, or texture contents changed; mipmaps now invalid
setDirty();
}
if( tfp_mode )
{ // tfp mode, simply bind the pixmap to texture
if( mTexture == None )
glGenTextures( 1, &mTexture );
if( bound_glxpixmap != None && !strict_binding ) // release old if needed
{
glXReleaseTexImageEXT( display(), bound_glxpixmap, GLX_FRONT_LEFT_EXT );
glXDestroyGLXPixmap( display(), bound_glxpixmap );
}
static const int attrs[] =
{
GLX_TEXTURE_FORMAT_EXT, fbcdrawableinfo[ depth ].bind_texture_format,
GLX_MIPMAP_TEXTURE_EXT, fbcdrawableinfo[ depth ].mipmap,
None
};
// the GLXPixmap will reference the X pixmap, so it will be freed automatically
// when no longer needed
bound_glxpixmap = glXCreatePixmap( display(), fbcdrawableinfo[ depth ].fbconfig, pix, attrs );
findTarget();
y_inverted = fbcdrawableinfo[ depth ].y_inverted ? true : false;
can_use_mipmaps = fbcdrawableinfo[ depth ].mipmap ? true : false;
glBindTexture( mTarget, mTexture );
if( !strict_binding )
glXBindTexImageEXT( display(), bound_glxpixmap, GLX_FRONT_LEFT_EXT, NULL );
}
else if( shm_mode )
{ // copy pixmap contents to a texture via shared memory
#ifdef HAVE_XSHM
findTarget();
if( mTexture == None )
{
glGenTextures( 1, &mTexture );
glBindTexture( mTarget, mTexture );
y_inverted = false;
glTexImage2D( mTarget, 0, GL_RGBA, mSize.width(), mSize.height(),
0, GL_BGRA, GL_UNSIGNED_BYTE, NULL );
// TODO hasAlpha() ?
// glCopyTexImage2D( mTarget, 0,
// depth == 32 ? GL_RGBA : GL_RGB,
// 0, 0, mSize.width(), mSize.height(), 0 );
}
else
glBindTexture( mTarget, mTexture );
if( !region.isEmpty())
{
XGCValues xgcv;
xgcv.graphics_exposures = False;
xgcv.subwindow_mode = IncludeInferiors;
GC gc = XCreateGC( display(), pix, GCGraphicsExposures | GCSubwindowMode, &xgcv );
QRegion damage = optimizeBindDamage( region, 100 * 100 );
foreach( QRect r, damage.rects())
{ // TODO for small areas it might be faster to not use SHM to avoid the XSync()
Pixmap p = XShmCreatePixmap( display(), rootWindow(), shm.shmaddr, &shm,
r.width(), r.height(), depth );
XCopyArea( display(), pix, p, gc, r.x(), r.y(), r.width(), r.height(), 0, 0 );
XSync( display(), False );
glXWaitX();
glTexSubImage2D( mTarget, 0,
r.x(), r.y(), r.width(), r.height(), GL_BGRA, GL_UNSIGNED_BYTE, shm.shmaddr );
glXWaitGL();
XFreePixmap( display(), p );
}
XFreeGC( display(), gc );
}
y_inverted = true;
can_use_mipmaps = true;
#endif
}
else
{ // fallback, copy pixmap contents to a texture
// note that if depth is not QX11Info::appDepth(), this may
// not work (however, it does seem to work with nvidia)
findTarget();
GLXDrawable pixmap = glXCreatePixmap( display(), fbcdrawableinfo[ QX11Info::appDepth() ].fbconfig, pix, NULL );
glXMakeContextCurrent( display(), pixmap, pixmap, ctxdrawable );
if( last_pixmap != None )
glXDestroyPixmap( display(), last_pixmap );
// workaround for ATI - it leaks/crashes when the pixmap is destroyed immediately
// here (http://lists.kde.org/?l=kwin&m=116353772208535&w=2)
last_pixmap = pixmap;
glReadBuffer( GL_FRONT );
glDrawBuffer( GL_FRONT );
if( mTexture == None )
{
glGenTextures( 1, &mTexture );
glBindTexture( mTarget, mTexture );
y_inverted = false;
glCopyTexImage2D( mTarget, 0,
depth == 32 ? GL_RGBA : GL_RGB,
0, 0, mSize.width(), mSize.height(), 0 );
}
else
{
glBindTexture( mTarget, mTexture );
QRegion damage = optimizeBindDamage( region, 30 * 30 );
foreach( QRect r, damage.rects())
{
// convert to OpenGL coordinates (this is mapping
// the pixmap to a texture, this is not affected
// by using glOrtho() for the OpenGL scene)
int gly = mSize.height() - r.y() - r.height();
glCopyTexSubImage2D( mTarget, 0,
r.x(), gly, r.x(), gly, r.width(), r.height());
}
}
glXWaitGL();
if( db )
glDrawBuffer( GL_BACK );
glXMakeContextCurrent( display(), glxbuffer, glxbuffer, ctxbuffer );
glBindTexture( mTarget, mTexture );
y_inverted = false;
can_use_mipmaps = true;
}
return true;
}
bool SceneOpenGL::Texture::load( const Pixmap& pix, const QSize& size,
int depth )
{
return load( pix, size, depth,
QRegion( 0, 0, size.width(), size.height()));
}
bool SceneOpenGL::Texture::load( const QImage& image, GLenum target )
{
if( image.isNull())
return false;
return load( QPixmap::fromImage( image ), target );
}
bool SceneOpenGL::Texture::load( const QPixmap& pixmap, GLenum target )
{
Q_UNUSED( target ); // SceneOpenGL::Texture::findTarget() detects the target
if( pixmap.isNull())
return false;
return load( pixmap.handle(), pixmap.size(), pixmap.depth());
}
void SceneOpenGL::Texture::bind()
{
glEnable( mTarget );
glBindTexture( mTarget, mTexture );
if( tfp_mode && strict_binding )
{
assert( bound_glxpixmap != None );
glXBindTexImageEXT( display(), bound_glxpixmap, GLX_FRONT_LEFT_EXT, NULL );
}
enableFilter();
}
void SceneOpenGL::Texture::unbind()
{
if( tfp_mode && strict_binding )
{
assert( bound_glxpixmap != None );
glBindTexture( mTarget, mTexture );
glXReleaseTexImageEXT( display(), bound_glxpixmap, GLX_FRONT_LEFT_EXT );
}
GLTexture::unbind();
}
//****************************************
// SceneOpenGL::Window
//****************************************
SceneOpenGL::Window::Window( Toplevel* c )
: Scene::Window( c )
, texture()
, currentXResolution( -1 )
, currentYResolution( -1 )
, requestedXResolution( 0 )
, requestedYResolution( 0 )
, verticesDirty( false )
{
}
SceneOpenGL::Window::~Window()
{
discardTexture();
discardVertices();
}
void SceneOpenGL::Window::requestVertexGrid(int maxquadsize)
{
requestedXResolution = (requestedXResolution <= 0) ? maxquadsize : qMin(maxquadsize, requestedXResolution);
requestedYResolution = (requestedYResolution <= 0) ? maxquadsize : qMin(maxquadsize, requestedYResolution);
}
void SceneOpenGL::Window::createVertexGrid(int xres, int yres)
{
int oldcount = verticeslist.count();
verticeslist.clear();
foreach( QRect r, shape().rects())
{
// First calculate number of columns/rows that this rect will be
// divided into
int cols = (xres <= 0) ? 1 : (int)ceilf( r.width() / (float)xres );
int rows = (yres <= 0) ? 1 : (int)ceilf( r.height() / (float)yres );
// Now calculate actual size of each cell
int cellw = r.width() / cols;
int cellh = r.height() / rows;
int maxx = r.x() + r.width();
int maxy = r.y() + r.height();
for( int x1 = r.x(); x1 < maxx; x1 += cellw )
{
int x2 = qMin(x1 + cellw, maxx);
for( int y1 = r.y(); y1 < maxy; y1 += cellh )
{
int y2 = qMin(y1 + cellh, maxy);
// Add this quad to vertices' list
verticeslist.append( Vertex( x1, y1 ));
verticeslist.append( Vertex( x1, y2 ));
verticeslist.append( Vertex( x2, y2 ));
verticeslist.append( Vertex( x2, y1 ));
}
}
}
Client* c = qobject_cast<Client *>(window());
kDebug( 1212 ) << k_funcinfo << "'" << (c ? c->caption() : "") << "': Resized vertex grid from " <<
oldcount/4 << " quads (minreso: " << currentXResolution << "x" << currentYResolution <<
") to " << verticeslist.count()/4 << " quads (minreso: " << xres << "x" << yres << ")" << endl;
currentXResolution = xres;
currentYResolution = yres;
verticesDirty = false;
}
void SceneOpenGL::Window::resetVertices()
{
// This assumes that texcoords of the vertices are unchanged. If they are,
// we need to do this in some other way (or maybe the effects should then
// clean things up themselves)
for(int i = 0; i < verticeslist.count(); i++)
{
verticeslist[i].pos[0] = verticeslist[i].texcoord[0];
verticeslist[i].pos[1] = verticeslist[i].texcoord[1];
}
verticesDirty = false;
}
void SceneOpenGL::Window::prepareVertices()
{
if( requestedXResolution != currentXResolution || requestedYResolution != currentYResolution )
createVertexGrid( requestedXResolution, requestedYResolution );
else if( verticesDirty )
resetVertices();
// Reset requests for the next painting
requestedXResolution = 0;
requestedYResolution = 0;
// Reset shader. If effect wants to use shader, it has to set it in paint pass
shader = 0;
}
void SceneOpenGL::Window::prepareForPainting()
{
prepareVertices();
// We should also bind texture here so that effects could access it in the
// paint pass
}
// Bind the window pixmap to an OpenGL texture.
bool SceneOpenGL::Window::bindTexture()
{
if( texture.texture() != None && toplevel->damage().isEmpty()
&& !options->glAlwaysRebind ) // interestingly with some gfx cards always rebinding is faster
{
// texture doesn't need updating, just bind it
glBindTexture( texture.target(), texture.texture());
return true;
}
// Get the pixmap with the window contents
Pixmap pix = toplevel->windowPixmap();
if( pix == None )
return false;
// HACK
// When a window uses ARGB visual and has a decoration, the decoration
// does use ARGB visual. When converting such window to a texture
// the alpha for the decoration part is broken for some reason (undefined?).
// I wasn't lucky converting KWin to use ARGB visuals for decorations,
// so instead simply set alpha in those parts to opaque.
// Without alpha_clear_copy the setting is done directly in the window
// pixmap, which seems to be ok, but let's not risk trouble right now.
// TODO check if this isn't a performance problem and how it can be done better
Client* c = dynamic_cast< Client* >( toplevel );
bool alpha_clear = c != NULL && c->hasAlpha() && !c->noBorder();
bool alpha_clear_copy = true;
bool copy_buffer = (( alpha_clear && alpha_clear_copy ) || copy_buffer_hack );
if( copy_buffer )
{
Pixmap p2 = XCreatePixmap( display(), pix, toplevel->width(), toplevel->height(), toplevel->depth());
GC gc = XCreateGC( display(), pix, 0, NULL );
XCopyArea( display(), pix, p2, gc, 0, 0, toplevel->width(), toplevel->height(), 0, 0 );
pix = p2;
XFreeGC( display(), gc );
}
if( alpha_clear )
{
XGCValues gcv;
gcv.foreground = 0xff000000;
gcv.plane_mask = 0xff000000;
GC gc = XCreateGC( display(), pix, GCPlaneMask | GCForeground, &gcv );
XFillRectangle( display(), pix, gc, 0, 0, c->width(), c->clientPos().y());
XFillRectangle( display(), pix, gc, 0, 0, c->clientPos().x(), c->height());
int tw = c->clientPos().x() + c->clientSize().width();
int th = c->clientPos().y() + c->clientSize().height();
XFillRectangle( display(), pix, gc, 0, th, c->width(), c->height() - th );
XFillRectangle( display(), pix, gc, tw, 0, c->width() - tw, c->height());
XFreeGC( display(), gc );
}
if( copy_buffer || alpha_clear )
glXWaitX();
bool success = texture.load( pix, toplevel->size(), toplevel->depth(),
toplevel->damage());
if( success )
toplevel->resetDamage( toplevel->rect());
else
kDebug( 1212 ) << "Failed to bind window" << endl;
// if using copy_buffer, the pixmap is no longer needed (either referenced
// by GLXPixmap in the tfp case or not needed at all in non-tfp cases)
if( copy_buffer )
XFreePixmap( display(), pix );
return success;
}
void SceneOpenGL::Window::discardTexture()
{
texture.discard();
}
void SceneOpenGL::Window::discardVertices()
{
// Causes list of vertices to be recreated before next rendering pass
currentXResolution = -1;
currentYResolution = -1;
}
// paint the window
void SceneOpenGL::Window::performPaint( int mask, QRegion region, WindowPaintData data )
{
// check if there is something to paint (e.g. don't paint if the window
// is only opaque and only PAINT_WINDOW_TRANSLUCENT is requested)
bool opaque = isOpaque() && data.opacity == 1.0;
if( mask & ( PAINT_WINDOW_OPAQUE | PAINT_WINDOW_TRANSLUCENT ))
{}
else if( mask & PAINT_WINDOW_OPAQUE )
{
if( !opaque )
return;
}
else if( mask & PAINT_WINDOW_TRANSLUCENT )
{
if( opaque )
return;
}
// paint only requested areas
if( region != infiniteRegion()) // avoid integer overflow
region.translate( -x(), -y());
if(( mask & ( PAINT_SCREEN_TRANSFORMED | PAINT_WINDOW_TRANSFORMED )) == 0 )
region &= shape();
if( region.isEmpty())
return;
if( !bindTexture())
return;
glPushMatrix();
// set texture filter
if( options->smoothScale != 0 ) // default to yes
{
if( mask & PAINT_WINDOW_TRANSFORMED )
filter = ImageFilterGood;
else if( mask & PAINT_SCREEN_TRANSFORMED )
filter = ImageFilterGood;
else
filter = ImageFilterFast;
}
else
filter = ImageFilterFast;
if( filter == ImageFilterGood )
{
// avoid unneeded mipmap generation by only using trilinear
// filtering when it actually makes a difference, that is with
// minification or changed vertices
if( options->smoothScale == 2
&& ( verticesDirty || data.xScale < 1 || data.yScale < 1 ))
{
texture.setFilter( GL_LINEAR_MIPMAP_LINEAR );
}
else
texture.setFilter( GL_LINEAR );
}
else
texture.setFilter( GL_NEAREST );
// do required transformations
int x = toplevel->x();
int y = toplevel->y();
if( mask & PAINT_WINDOW_TRANSFORMED )
{
x += data.xTranslate;
y += data.yTranslate;
}
glTranslatef( x, y, 0 );
if(( mask & PAINT_WINDOW_TRANSFORMED ) && ( data.xScale != 1 || data.yScale != 1 ))
glScalef( data.xScale, data.yScale, 1 );
if(shader)
prepareShaderRenderStates( mask, data );
else
prepareRenderStates( mask, data );
texture.bind();
texture.enableUnnormalizedTexCoords();
// Render geometry
region.translate( toplevel->x(), toplevel->y() ); // Back to screen coords
renderGLGeometry( mask, region, verticeslist[ 0 ].pos, verticeslist[ 0 ].texcoord,
verticeslist.count(), 3, sizeof( Vertex ));
texture.disableUnnormalizedTexCoords();
glPopMatrix();
if(shader)
restoreShaderRenderStates( mask, data );
else
restoreRenderStates( mask, data );
texture.unbind();
}
void SceneOpenGL::Window::prepareShaderRenderStates( int mask, WindowPaintData data )
{
Q_UNUSED( mask );
// setup blending of transparent windows
glPushAttrib( GL_ENABLE_BIT );
bool opaque = isOpaque() && data.opacity == 1.0;
if( !opaque )
{
glEnable( GL_BLEND );
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
}
shader->setUniform("opacity", (float)data.opacity);
shader->setUniform("saturation", (float)data.saturation);
shader->setUniform("brightness", (float)data.brightness);
}
void SceneOpenGL::Window::prepareRenderStates( int mask, WindowPaintData data )
{
Q_UNUSED( mask );
// setup blending of transparent windows
glPushAttrib( GL_ENABLE_BIT );
bool opaque = isOpaque() && data.opacity == 1.0;
if( !opaque )
{
glEnable( GL_BLEND );
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
}
if( data.saturation != 1.0 && texture.saturationSupported())
{
// First we need to get the color from [0; 1] range to [0.5; 1] range
glActiveTexture( GL_TEXTURE0 );
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE );
glTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_CONSTANT );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA );
const float scale_constant[] = { 1.0, 1.0, 1.0, 0.5};
glTexEnvfv( GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, scale_constant );
texture.bind();
// Then we take dot product of the result of previous pass and
// saturation_constant. This gives us completely unsaturated
// (greyscale) image
// Note that both operands have to be in range [0.5; 1] since opengl
// automatically substracts 0.5 from them
glActiveTexture( GL_TEXTURE1 );
float saturation_constant[] = { 0.5 + 0.5*0.30, 0.5 + 0.5*0.59, 0.5 + 0.5*0.11, data.saturation };
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE );
glTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_DOT3_RGB );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR );
glTexEnvfv( GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, saturation_constant );
texture.bind();
// Finally we need to interpolate between the original image and the
// greyscale image to get wanted level of saturation
glActiveTexture( GL_TEXTURE2 );
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE );
glTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE0 );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PREVIOUS );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_CONSTANT );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA );
glTexEnvfv( GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, saturation_constant );
// Also replace alpha by primary color's alpha here
glTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PRIMARY_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA );
// And make primary color contain the wanted opacity
glColor4f( data.opacity, data.opacity, data.opacity, data.opacity );
texture.bind();
if( toplevel->hasAlpha() || data.brightness != 1.0f )
{
glActiveTexture( GL_TEXTURE3 );
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE );
glTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PRIMARY_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR );
if( toplevel->hasAlpha() )
{
// The color has to be multiplied by both opacity and brightness
float opacityByBrightness = data.opacity * data.brightness;
glColor4f( opacityByBrightness, opacityByBrightness, opacityByBrightness, data.opacity );
// Also multiply original texture's alpha by our opacity
glTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE0 );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_PRIMARY_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_ALPHA, GL_SRC_ALPHA );
}
else
{
// Color has to be multiplied only by brightness
glColor4f( data.brightness, data.brightness, data.brightness, data.opacity );
// Alpha will be taken from previous stage
glTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA );
}
texture.bind();
}
glActiveTexture(GL_TEXTURE0 );
}
else if( data.opacity != 1.0 || data.brightness != 1.0 )
{
// the window is additionally configured to have its opacity adjusted,
// do it
if( toplevel->hasAlpha())
{
float opacityByBrightness = data.opacity * data.brightness;
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE );
glColor4f( opacityByBrightness, opacityByBrightness, opacityByBrightness,
data.opacity);
}
else
{
// Multiply color by brightness and replace alpha by opacity
float constant[] = { data.brightness, data.brightness, data.brightness, data.opacity };
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE );
glTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT );
glTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR );
glTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE );
glTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_CONSTANT );
glTexEnvfv( GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, constant );
}
}
}
void SceneOpenGL::Window::restoreShaderRenderStates( int mask, WindowPaintData data )
{
Q_UNUSED( mask );
Q_UNUSED( data );
glPopAttrib(); // ENABLE_BIT
}
void SceneOpenGL::Window::restoreRenderStates( int mask, WindowPaintData data )
{
Q_UNUSED( mask );
if( data.opacity != 1.0 || data.saturation != 1.0 || data.brightness != 1.0f )
{
if( data.saturation != 1.0 && texture.saturationSupported())
{
glActiveTexture(GL_TEXTURE3);
glDisable( texture.target());
glActiveTexture(GL_TEXTURE2);
glDisable( texture.target());
glActiveTexture(GL_TEXTURE1);
glDisable( texture.target());
glActiveTexture(GL_TEXTURE0);
}
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE );
glColor4f( 0, 0, 0, 0 );
}
glPopAttrib(); // ENABLE_BIT
}
} // namespace
#endif